Bioinformatics III

Analysis and prediction of 3D macromolecule structures

Lecture 1 structural organisation of proteins

Saulius Gražulis 2023 m.

Life at a glance

(Albert et al., 2019)

Resolution levels

(Baumeister, 2022)

Function and structure of living organisms

- The functions of life depend on the interactions of biological **(macro)molecules**:
 - proteins
 - nucleic acids
 - polysaccharides
 - lipids
 - small organic molecules
 - ions (salts)
 - water

The importance of protein structures

- 3D protein structure depends on their sequence
- Protein function dependes on their 3D structure
- For most proteins, their 3D structure is practically unique in its native state
- Forces that shape protein 3D structures are weak non-covalent interactions

Levels of protein organisation

- Primary structure (a.a. sequence)
- Secondary structure (alpha-helices, betastrands, beta sheets, loops and turns)
- Ternary structure (protein globule, domains)
- Quaternary structure (larger complexes of protein molecules).

Proteins have hierarchical structure that is important to understand their function.

C. Branden, J. Tooze Introduction to Protein Structure ~2000

Primary structure

• Primary structure = sequence of amino acid (a.a.) residues E.g.: P61823.fasta:

>P61823|RNAS1_BOVIN Ribonuclease pancreatic - Bos taurus (Bovine). MALKSLVLLSLLVLVLLLVRVQPSLGKETAAAKFERQHMDSSTSAASSSNYCNQMMKSRN LTKDRCKPVNTFVHESLADVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPN CAYKTTQANKHIIVACEGNPYVPVHFDASV

Secondary structure

- Local structural elements of proteins:
 - alpha-helices,
 - beta-strands,
 - beta-sheets,
 - loops and turns.

Alpha-helices and beta-strands

Alpha-helix

Beta-strand

Structure of alpha-helices

 α -helix == 4₁₃ helix

Other helices

 3_{10} helix

We also encounter in nature: 2_7 ; 5_{16} , or π – helices (Финкельштейн & Птицын, Физика белка (2005), стр. 87)

http://en.wikipedia.org/wiki/Alpha_helix http://en.wikipedia.org/wiki/3_10_helix http://en.wikipedia.org/wiki/Pi_helix

Structure of beta sheets

 Anti-parallel β-sheets Parallel β-sheets

Tertiary Structure

Bse634I restriction endonuclease Gražulis *et al.* NAR 2002 p.876 BfiI restriction endonuclease Gražulis *et al.* PNAS 2005 p.15797

Quaternary structure

Bse634I REase tetramer in a crystal

Main tenet of the (philosophy) of Science

- Theories must be consistent, elegant, simple; however...
- ... their correctness/applicability is only validated by observations (experiments).

Investigations of sequencestructure relations in proteins

1. Urea denatures proteins:

2. Oxidising creates, and reduction breaks Cys S-S bridges:

Sequence-structure relations in proteins

- Anfinsen (Christian B. Anfinsen) experiments:
 - RNazė A is fully unfolded in an 8M solution;
 - if the enzyme is oxidised **before** reducing urea, 1% of its activity is restored;
 - if the urea is removed and **after** that the protein is oxidised, 90% of activity is restored;
 - the same results are obtained if a chemically synthesised protein chain is used.

Tramontano 2006, Anfinsen JBC 1954 p. 201, Anfinsen PNAS 1961 p.1309

Sequence-structure relation for proteins

KETAAAKFERQHMDSSTSAASSSNYCNQMMKSRNLTKDRCKPVNTFVHE SLADVQAVCSQKNVACKNGQTNCYQSYSTMSITDCRETGSSKYPNCAYKT TQANKHIIVACEGNPYVPVHFDASV

Conclusion: protein structure and protein function are essentially determined by the a.a. sequence.

Other protein structures: fibre (fibrous) proteins

Protein		Structure	Cross-links
α-keratin		long α-helix	-Cys-Cys-
collagen (GXP GXH) _n ,H = hydroxyproline	но Н он	triple (!) left (!) helix (only encountered in collagen)	-Nor ¹ -Lys-
elastin		"Gly-helix" (typical for elastin)	$\begin{array}{c} \text{-Nor-Lys-,} \\ \text{Lys-} \\ \text{Lys-} \end{array} \right) \text{Des}^2 \Big(\begin{array}{c} \text{-Lys} \\ \text{-Lys} \end{array} \Big)$
phage "steam" protein		"Beta-helix" ¹ (Nor = norleucine) ² (Des = desmosine)

Leninger, Nelson, Cox 1998, 2. Auflage, p. 188-192 (German edition)

Naturally unfolded proteins

- Naturally unfolded proteins:
 - molten globules
 - pre-molten globules
 - random coils

V. N. Uversky Prot. Sci. 2002, p.739

Levinthal paradox

- Number of possible conformations of a short protein chain: 100 a.r., $\sim 2^{100}$ (assuming 2 possibilities per residue); for an exhaustive search we need:
- if 1 conformation is checked per 1 ps,
- π s = 1 nano-century (3.14 s = 10⁻⁷ years)
- $2^{100} \text{ ps} \approx 10^{30} \text{ ps} \sim 10^{10} \text{ years.}$

Exhaustive search is infeasible for both real protein and for a computer

C. Levinthal J. de Chimie Physique 1968 p.44

Methods of protein structure determination

- Experimental:
 - X-ray diffraction, NMR, EM
- Theoretical:
 - Ab initio
 - Machine learning
 - Homology modelling
 - Fold recognition
 - Fragment methods
 - Protein complex prediction

Tramontano 2006

Other modes structure prediction

- Sparse data predictions
 - secondary structure
 - contact analysis
- Membrane protein prediction
- Complex prediction
- Small molecule docking, rational drug design

Resources on the Web

Protein Data Bank (PDB) http://www.rcsb.org/ https://www.ebi.ac.uk/pdbe/ https://pdbj.org/ Nucleic acid database http://ndbserver.rutgers.edu/ Crystallography Open Database (COD) http://www.crystallography.net/