Bioinformatics III

Analysis and prediction of 3D structures of biomolecules

Lecture 6 - biochemistry - a reminder

Chemical formulae

In organic chemistry structural formulae, bonds are depicted as lines and their intersections are carbon atoms; hydrogen atoms are usually implicit:

Functional groups

Functional groups (cont.)

Properties of organic acids

Dissociate in water:

Carboxyle ion has a resonance structure:

Properties of amino groups

Amines are basic (i.e. they can bind a proton):

Amino acids, biochemical nomeclature

$\alpha \beta \gamma \delta \epsilon(\varepsilon) \zeta \eta \theta(\vartheta) \iota \kappa \lambda \mu \nu \xi о \pi \rho \sigma(\varsigma) \tau \cup \phi(\varphi) \chi \psi \omega$

pH, buffers, ionisation constant

$$
\begin{array}{cc}
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HO}^{\ominus}+\mathbf{H}^{\oplus} \\
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=\text { const } & {\left[\mathrm{H}_{2} \mathrm{O}\right] \gg\left[\mathrm{H}^{+}\right] \Rightarrow\left[\mathrm{H}_{2} \mathrm{O}\right]=\text { const }}
\end{array}
$$

In a neutral medium:

$$
\begin{array}{rl}
{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\text {const }=10^{-14} \mathrm{M}^{2}} & p H=-\log _{10}\left[\mathrm{H}^{+}\right]=7 \\
\mathrm{HCl} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{Cl}^{\ominus} \mathrm{HA} \rightleftharpoons \mathrm{H}^{\oplus}+\mathrm{A}^{\ominus}
\end{array}
$$

Henderson-Hasselbalch equation:

$$
p H=p K_{a}+\log _{10} \frac{\left[A^{-}\right]}{[H A]}
$$

Zwitterions

Amino acids have both of their groups ionised:

(Poli)condensation

Hydrocarbons. Glycerol aldehyde

D-glyceraldehyde (R)-glyceraldehyde (+)-glyceraldehyde

L-glyceraldehyde
(S)-glyceraldehyde
(-)-glyceraldehyde

Sugars (saccharides)

D-Ribose - linear form

HO

Another pentose

Fisher projections
 beta

alpha

Ribofuranose

Glycosides

Glycosides

Glycosides

Octyl glucoside (n-octyl- β-D-glucoside)

Glycosides (Nucleosides)

Ribose
Adenine

Glycosides (Nucleosides)

Glycosides (Nucleosides)

Adenozinas
(nukleozidas)

Nukleoides ir nukleotides

Adenosine (nucleoside)

Adenosine phosphate
(nucleotide)

Nucleic acids

(Phospho-)lipids

Basic topics

zwiterions
policondensation
el. dissociation acidity constant equilibrium pH \& buffers
sugars
glicosides
nucleotides
nucleic acids
(phospho-)lipids

