Clocks and Triggers

Saulius Gražulis

Vilnius. 2020

Vilnius University, Faculty of Mathematics and Informatics Institute of Informatics

Attribution-ShareAlike 4.0 International license

Clocks and Triggers

3 1 4

2's complement: $2^N - b$

э

2's complement: $2^N - b$

$$egin{array}{ccccccccc} & 1 & 0 & 0 & 0 & 0 \ & b_3 & b_2 & b_1 & b_0 \end{array}$$

 C_3 C_2 C_1 C_0 \leftarrow 2's complement (complementary code)

$$2^{N} - \mathbf{b} = (2^{N} - 1) - \mathbf{b} + 1$$

2's complement: $2^N - b$

$$2^{N} - \mathbf{b} = (2^{N} - 1) - \mathbf{b} + 1$$
$$1\,0000_{2} = 1111_{2} + 1$$

2's complement: $2^N - b$ $2^{N} - b = (2^{N} - 1) - b + 1$ $1\,0000_2 = 1111_2 + 1$ $\overline{b_3}$ $\overline{b_2}$ $\overline{b_1}$ $\overline{b_0}$ \leftarrow 1's complement (inverse code) + C_3 C_2 C_1 C_0 \leftarrow 2's complement

□ > < E > < E > E - のへの

2's complement example

$$10_2 - 11_2 = ???$$

 $10_2 - 11_2 = 0010_2 + 1101_2 = 1111_2 = -1_2$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Dec.	2's Compl.	Dec.	2's Compl.	
7	0111	-1 1111		
6	0110	-2	1110	
5	0101	-3 110		
4	0100	-4	1100	
3	0011	-5	1011	
2	0010	-6	1010	
1	0001	-7	1001	
0	0000	-8	1000	

· < A → < 3

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1 111
6	0110	-2	1 110
5	0101	-3	1 101
4	0100	-4	1 100
3	0011	-5	1 011
2	0010	-6	1 010
1	0001	-7	1 001
0	0000	-8	1 000

The most significant bit (MSB) of a negative number is $\mathbf{1}$

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	10 -2 1110	
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	-8	1000

The most significant bit (MSB) of a negative number is **1** The smallest representable negative number has absolute value *larger* than the larger representable positive.

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	-2	1110
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	-8	1000

$$1011_{2} = 1000_{2} + 0011_{2} = -2^{3} + 11_{2}$$

$$= 1^{-2^{3}} 2^{2} 2^{1} 2^{0}$$

$$= -2^{3} + 2^{1} + 2^{0} = -8_{10} + 2_{10} + 1_{10}$$

$$= -5_{10}$$

Saulius Gražulis

Vilnius, 2020 4 / 29

3

イロト イポト イモト イモト

Adder/Subtractor ALU

$$7_{10} + 3_{10} = 0111_2 + 0011_2 = 1010_2 = 10_{10}$$

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 5 / 29

Adder/Subtractor ALU

 $7_{10} - 3_{10} = 0111_2 - 0011_2 = 0111_2 + 1101_2 = 1\ 0100_2 = 4_{10}$

Other representations of negative numbers

Signed magnitude:

$$6_{10} = 0110_2; \quad -6_{10} = 1110_2$$

Complement arithmetic:

$$a + (-b) = a + \underbrace{((2^N - 1) - b)}_{\text{one's complement}} + 1 - 2^N$$

Excess *K* (biased) representation:

$$egin{array}{lll} K=&2^{N-1} & ext{(as a rule, but other values are possible)} \ b\leftrightarrow & K+b &=2^{N-1}+b \ -b\leftrightarrow K+(-b) = 2^{N-1}+(-b) \end{array}$$

Saulius Gražulis

Vilnius, 2020 6 / 29

Other representations of negative numbers

Number	Unsigned	2's Compl.	1's Compl.	Sign-Magn.	Exess ¹ K
7	111	-	-	-	-
6	110	-	-	-	-
5	101	-	-	-	-
4	100	-	-	-	-
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
0	000	000	000	000	100
-0	-	-	111	100	-
-1	-	111	110	101	011
-2	-	110	101	110	010
-3	-	101	100	111	001
-4	-	100	-	-	000

See also:

Murdocca et al. 1999, chapt. 2; Walker 1996, "Minus Zero"

 ${}^{1}K = 4 = 2^{N-1}$. N = 3

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 7 / 29

CMOS Oscillators

Fairchild Semiconductor Application Note 118 October 1974

ADDITIONAL GATES

FIGURE 1. Odd Number of Inverters Will Always Oscillate

(Fairchild Semiconductor 1974)

イロト イポト イモト イモト

Saulius Gražulis

Clocks and Triggers

CMOS Oscillators

Fairchild Semiconductor Application Note 118 October 1974

"It then becomes obvious that a "1" chases itself around the ring and the network oscillates." :)

FIGURE 1. Odd Number of Inverters Will Always Oscillate

(Fairchild Semiconductor 1974)

< □ > < 同 > < 回 > < 回 > < 回 >

∃ ► < ∃</p>

Saulius Gražulis

Vilnius, 2020 10 / 29

Saulius Gražulis

Vilnius, 2020 10 / 29

æ

Saulius Gražulis

Vilnius, 2020 10 / 29

æ

イロト イポト イモト イモト

Saulius Gražulis

Vilnius, 2020 10 / 29

æ

Saulius Gražulis

Vilnius, 2020 10 / 29

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 11/29

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 11/29

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 11

11/29

Setting state

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 12 / 29

3 1 4

Setting state

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 12 / 29

∃ ► 4

Setting state

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 12 / 29

3 1 4

Setting state

Saulius Gražulis

Clocks and Triggers

э Vilnius, 2020 12/29

∃ ► 4

Even number of inverters

Setting state

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 12 / 29

3 1 4

RS trigger from NOR gates

イロト イポト イヨト イヨ

RS trigger from NOR gates

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 13 / 29

RS trigger from NOR and NAND gates

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 14

æ

イロト イポト イモト イモト

14/29

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 1

イロト イポト イヨト イヨト

15/29

æ

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 15 / 29

æ

イロト イロト イヨト イヨト

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 1

イロト イポト イヨト イヨト

æ

15/29

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020

イロト イポト イヨト イヨト

15/29

æ

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 1

イロト イポト イヨト イヨト

15/29

æ

RS Trigger time traces

æ

イロト イヨト イヨト イヨト

RS Trigger time traces

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Gated RS Trigger

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 18

イロト イヨト イヨト イヨト

18/29

æ

D Latch

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 19 / 29

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

D Latch

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 19 / 29

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Edge-triggered D-flip-flop

Saulius Gražulis	Saul	lius	Gra	ıžu	lis
------------------	------	------	-----	-----	-----

Vilnius, 2020 20 / 29

2

イロト イポト イヨト イヨト

Edge-triggered D-flip-flop

Saulius Gražulis

Vilnius, 2020 20 / 29

æ

イロト イポト イモト イモト

Operation of a D-flip-flop

Saulius Gražulis

Vilnius, 2020 21/29

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

T flip-flop

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 22 / 29

æ

イロト イロト イヨト イヨト

Operation of a T-flip-flop

Saulius Gražulis

Vilnius, 2020 23 / 29

イロト イ理ト イヨト イヨト

æ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

Counters

Saulius Gražulis

Clocks and Triggers

Vilnius, 2020 <u>2</u>

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

25 / 29

Shift registers

æ

イロト イポト イヨト イヨ

Circular shift registers

Saulius Gražulis

Vilnius, 2020 27 / 29

æ

イロト イポト イヨト イヨ

- Negative integers are represented in 2's complement in modern computers, but other methods exist and are also used.
- Modern computers are synchronous they use clock generators to drive their computations
- Feedback is essential to build clocks and memory cells
- From the fundamental RS trigger, gated latches and edge triggered flip-flops (D-, T-flip-flops) are built.
- From D- and T-flip-flops we can further build essential computer components: registers and counters.

- Fairchild Semiconductor (1974). CMOS oscillators. Tech. rep. ON Semiconductor. URL: https://www.onsemi.com/pub/Collateral/AN-118.pdf.pdf.
- Murdocca, Miles J. et al. (1999). Principles of Computer Architecture. Prentice Hall.
- Walker, John (Aug. 19, 1996). *Minus zero*. eng. URL: http://www.fourmilab.ch/documents/univac/minuszero.html.

過き くまき くまき