Clocks and Triggers

Saulius Gražulis

Vilnius, 2020

Vilnius University, Faculty of Mathematics and Informatics Institute of Informatics

This set of slides may be copied and used as specified in the
Attribution-ShareAlike 4.0 International license

Obtaining 2's complement

2's complement: $2^{N}-b$

Obtaining 2's complement

2's complement: $2^{N}-b$

-	1	0	0	0
0	0			
	b_{3}	b_{2}	b_{1}	b_{0}
	c_{3}	c_{2}	c_{1}	c_{0}

Obtaining 2's complement

2's complement: $2^{N}-b$

-	$\mathbf{1}$	$\mathbf{0}$	0	0
b_{3}	0			
	b_{3}	b_{2}	b_{1}	b_{0}
	c_{3}	c_{2}	c_{1}	c_{0}
			$2^{N}-b=\left(2^{N}-1\right)-b+1$	

Obtaining 2's complement

2's complement: $2^{N}-b$

$$
\begin{array}{cllll}
- & 1 & 0 & 0 & 0 \\
- & 0 \\
& b_{3} & b_{2} & b_{1} & b_{0} \\
\hline & c_{3} & c_{2} & c_{1} & c_{0} \\
& & & 2^{N}-b=\left(2^{N}-1\right)-b+1 \\
& & & \\
& & & & 10000_{2}=1111_{2}+1
\end{array}
$$

Obtaining 2's complement

2's complement: $2^{N}-b$

2's complement example

$$
10_{2}-11_{2}=? ? ?
$$

Find 2's complement of 11_{2} :

$$
10_{2}-11_{2}=0010_{2}+1101_{2}=1111_{2}=-1_{2}
$$

Converting 2's complement to decimal

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	-2	1110
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	-8	1000

Converting 2's complement to decimal

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	$\mathbf{1} 111$
6	0110	-2	$\mathbf{1} 110$
5	0101	-3	$\mathbf{1 1 0 1}$
4	0100	-4	$\mathbf{1} 100$
3	0011	-5	$\mathbf{1 0 1 1}$
2	0010	-6	$\mathbf{1 0 1 0}$
1	0001	-7	$\mathbf{1 0 0 1}$
0	0000	-8	$\mathbf{1 0 0 0}$

The most significant bit (MSB) of a negative number is $\mathbf{1}$

Converting 2's complement to decimal

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	-2	1110
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	-8	1000

The most significant bit (MSB) of a negative number is $\mathbf{1}$ The smallest representable negative number has absolute value larger than the larger representable positive.

Converting 2's complement to decimal

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	-2	1110
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	$-\mathbf{8}$	$\mathbf{1 0 0 0}$

$$
\begin{aligned}
1011_{2}=1000_{2}+0011_{2}= & -2^{3}+11_{2} \\
& =-2^{3} 2^{2} 2^{1} 2^{0} \\
& 1 \quad 1 \quad 1 \\
= & -2^{3}+2^{1}+2^{0}=-8_{10}+2_{10}+1_{10} \\
= & -5_{10}
\end{aligned}
$$

Adder/Subtractor ALU

$$
7_{10}+3_{10}=0111_{2}+0011_{2}=1010_{2}=10_{10}
$$

Adder/Subtractor ALU

$$
7_{10}-3_{10}=0111_{2}-0011_{2}=0111_{2}+1101_{2}=10100_{2}=4_{10}
$$

Other representations of negative numbers

Signed magnitude:

$$
6_{10}=0110_{2} ; \quad-6_{10}=1110_{2}
$$

Complement arithmetic:

$$
\boldsymbol{a}+(-\boldsymbol{b})=\boldsymbol{a}+\underbrace{(\underbrace{\left(\left(2^{N}-1\right)-\boldsymbol{b}\right)}_{\text {one's complement }}+1}_{2 \text { 's complement }}-2^{N}
$$

Excess K (biased) representation:

$$
\begin{aligned}
K=2^{N-1} & \quad \text { (as a rule, but other values are possible) } \\
b \leftrightarrow K+b & =2^{N-1}+b \\
-b \leftrightarrow K+(-b) & =2^{N-1}+(-b)
\end{aligned}
$$

Other representations of negative numbers

Number	Unsigned	2's Compl.	1's Compl.	Sign-Magn.	Exess ${ }^{1} \mathrm{~K}$
7	111	-	-	-	-
6	110	-	-	-	-
5	101	-	-	-	-
4	100	-	-	-	-
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
0	000	000	000	000	100
-0	-	-	111	100	-
-1	-	111	110	101	011
-2	-	110	101	110	010
-3	-	101	100	111	001
-4	-	100	-	-	000

See also:
Murdocca et al. 1999, chapt. 2; Walker 1996, "Minus Zero"

$$
{ }^{1} K=4=2^{N-1}, N=3
$$

Oscillators

CMOS Oscillators

Fairchild Semiconductor
Application Note 118
October 1974

FAIROHILD

SEMICロNロபロTロR ${ }_{\text {TM }}$

FIGURE 1．Odd Number of Inverters
Will Always Oscillate
（Fairchild Semiconductor 1974）

Oscillators

CMOS Oscillators

Fairchild Semiconductor Application Note 118 October 1974

FAIRCHILD

SEMICロNDபСTロR ${ }_{\text {тм }}$
"It then becomes obvious that a " 1 " chases itself around the ring and the network oscillates." :)

FIGURE 1. Odd Number of Inverters Will Always Oscillate
(Fairchild Semiconductor 1974)

Ring oscillator

FIGURE 1. Odd Number of Inverters Will Always Oscillate

Ring oscillator

FIGURE 1. Odd Number of Inverters Will Always Oscillate

Ring oscillator

FIGURE 1. Odd Number of Inverters Will Always Oscillate

Clock oscillator

FIGURE 1. Odd Number of Inverters Will Always Oscillate

Clock oscillator

FIGURE 1. Odd Number of Inverters Will Always Oscillate

Even number of inverters

Even number of inverters

Setting state

RS trigger from NOR gates

RS trigger from NOR gates

RS trigger from NOR and NAND gates

RS Trigger

$$
\begin{array}{c|c|c|c|c|c}
\mathbf{S} & \mathbf{R} & \overline{\mathbf{S}} & \overline{\mathbf{R}} & \mathbf{Q} & \\
\hline 0 & 0 & 1 & 1 & \mathbf{Q} & \leftarrow \\
0 & 1 & 1 & 0 & 0 & \\
1 & 0 & 0 & 1 & 1 & \\
1 & 1 & 0 & 0 & \mathrm{X} &
\end{array}
$$

RS Trigger

$$
\begin{array}{c|c|c|c|c|c}
\mathbf{S} & \mathbf{R} & \overline{\mathbf{S}} & \overline{\mathbf{R}} & \mathbf{G} & \\
\hline 0 & 0 & 1 & 1 & \mathbf{Q} & \\
0 & 1 & 1 & 0 & 0 & \leftarrow \\
1 & 0 & 0 & 1 & 1 & \\
1 & 1 & 0 & 0 & \mathrm{X} &
\end{array}
$$

RS Trigger

$$
\begin{array}{c|c|c|c|c|c}
\mathbf{S} & \mathbf{R} & \overline{\mathbf{S}} & \overline{\mathbf{R}} & \mathbf{G} & \\
\hline 0 & 0 & 1 & 1 & \mathbf{Q} & \leftarrow \\
0 & 1 & 1 & 0 & 0 & \\
1 & 0 & 0 & 1 & 1 & \\
1 & 1 & 0 & 0 & \mathrm{X} &
\end{array}
$$

RS Trigger

$$
\begin{array}{c|c|c|c|c|c}
\mathbf{S} & \mathbf{R} & \overline{\mathbf{S}} & \overline{\mathbf{R}} & \mathbf{G} & \\
\hline 0 & 0 & 1 & 1 & \mathbf{Q} & \\
0 & 1 & 1 & 0 & 0 & \\
1 & 0 & 0 & 1 & 1 & \leftarrow \\
1 & 1 & 0 & 0 & \mathrm{X} &
\end{array}
$$

RS Trigger

$$
\begin{array}{c|c|c|c|c|c}
\mathbf{S} & \mathbf{R} & \overline{\mathbf{S}} & \overline{\mathbf{R}} & \mathbf{Q} & \\
\hline 0 & 0 & 1 & 1 & \mathbf{Q} & \leftarrow \\
0 & 1 & 1 & 0 & 0 & \\
1 & 0 & 0 & 1 & 1 & \\
1 & 1 & 0 & 0 & \mathrm{X} &
\end{array}
$$

RS Trigger time traces

RS Trigger time traces

Gated RS Trigger

D Latch

D Latch

Edge-triggered D-flip-flop

Edge-triggered D-flip-flop

Operation of a D-flip-flop

T flip-flop

需

Operation of a T-flip-flop

Registers

Counters

Shift registers

Circular shift registers

Take home messages

- Negative integers are represented in 2's complement in modern computers, but other methods exist and are also used.
- Modern computers are synchronous - they use clock generators to drive their computations
- Feedback is essential to build clocks and memory cells
- From the fundamental RS trigger, gated latches and edge triggered flip-flops (D-, T-flip-flops) are built.
- From D- and T-flip-flops we can further build essential computer components: registers and counters.

References

Fairchild Semiconductor (1974). CMOS oscillators. Tech. rep. ON Semiconductor. URL: https://www.onsemi.com/pub/Collateral/AN-118.pdf.pdf.

Murdocca, Miles J. et al. (1999). Principles of Computer Architecture. Prentice Hall.
Walker, John (Aug. 19, 1996). Minus zero. eng. url:
http://www.fourmilab.ch/documents/univac/minuszero.html.

