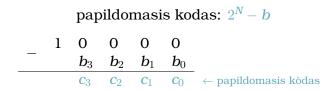
Generatoriai ir trigeriai

Saulius Gražulis

Vilnius, 2020

Vilniaus universitetas. Matematikos ir informatikos fakultetas Informatikos institutas

Ši skaidrių rinkinį galima kopijuoti, kaip nurodyta Creative Commons



Attribution-ShareAlike 4.0 International licenzijoje

Generatoriai ir trigeriai

3 1 4

papildomasis kodas: $2^N - b$

___ ▶ < ∃

 $\begin{array}{c|c} & \text{papildomasis kodas: } 2^{N}-b\\ \hline & - & 1 & 0 & 0 & 0\\ \hline & & b_{3} & b_{2} & b_{1} & b_{0}\\ \hline & & c_{3} & c_{2} & c_{1} & c_{0} \end{array} \leftarrow \text{papildomasis kodas}\\ \hline & & 2^{N}-b=(2^{N}-1)-b+1 \end{array}$

メポト イヨト イヨト 一日

papildomasis kodas: $2^{N} - b$ $- \frac{1}{b_{3}} \frac{0}{b_{2}} \frac{0}{b_{1}} \frac{0}{b_{0}} = \frac{1}{c_{3}} \frac{0}{c_{2}} \frac{0}{c_{1}} \frac{0}{c_{0}} \leftarrow \text{papildomasis kodas}$ $2^{N} - b = (2^{N} - 1) - b + 1$ $10000_{2} = 1111_{2} + 1$

papildomasis kodas: $2^N - b$							
	1	0	0	0	0		
_		b_3	b_2	\boldsymbol{b}_1	b_0		
		C 3	C ₂	c_1	<i>C</i> ₀	← papildomasis kòdas	
	$2^{N} - \mathbf{b} = (2^{N} - 1) - \mathbf{b} + 1$						
			100	000_2	= 11	$11_2 + 1$	
	0	1	1	1	1	$\leftarrow (2^N - 1)$	
_		b_3	b_2	\boldsymbol{b}_1	\boldsymbol{b}_0		
+		b_3	b_2	b_1		\leftarrow atvirkštinis kòdas	
					1		
		C 3	c_2	c_1	C 0	\leftarrow papildomasis kòdas	

æ

Papildinio iki 2 pavyzdys

$$10_2 - 11_2 = ???$$

Raskime dviejų papildinį skaičiui 11_2 : $\overline{0}$ $\overline{0}$ $\overline{1}$ $\overline{1}$ $1 \quad 1 \quad 0 \quad 0 \quad \leftarrow {\rm atvirk} \check{\rm s} {\rm tinis} \; {\rm kodas}$ +1 $1 \quad 1 \quad 0 \quad 1 \quad \leftarrow \text{papildomasis kodas}$

 $10_2 - 11_2 = 0010_2 + 1101_2 = 1111_2 = -1_2$

- 個 ト - ヨ ト - - ヨ ト

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	-2	1110
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	-8	1000

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1 111
6	0110	-2	1 110
5	0101	-3	1 101
4	0100	-4	1 100
3	0011	-5	1 011
2	0010	-6	1 010
1	0001	-7	1 001
0	0000	-8	1000

Vyriausias neigiamo skaičiaus bitas (MSB) yra 1

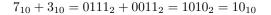
Saulius Gražulis

- **(()**) (**()**) (**(**)) ((**(**)) (**(**)) (()) (**(**)) ((**(**)) (**(**)) (()) ((**(**)) ((**(**))) ((**(**)) ((**(**))) ((**(**))) ((**(**)) ((**(**))) ((**(**))) ((**(**)) (()) (())) ((())) (()) (()) (()) (()) (()) (()) (()) (()) (())) (()) (()) (()) (()) (()) (()) (()) (()) (()) (())) (()))

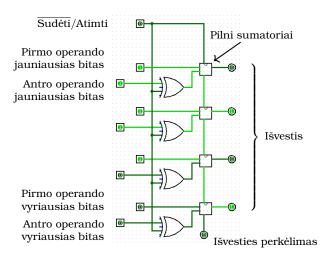
Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	-2	1110
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	-8	1000

Vyriausias neigiamo skaičiaus bitas (MSB) yra **1** Mažiausio atvaizduojamo neigiamo skaičiaus modulis yra *didesnis* už didžiausio atvaizduojamo teigiamo.

Dec.	2's Compl.	Dec.	2's Compl.
7	0111	-1	1111
6	0110	-2	1110
5	0101	-3	1101
4	0100	-4	1100
3	0011	-5	1011
2	0010	-6	1010
1	0001	-7	1001
0	0000	-8	1000


$$1011_{2} = 1000_{2} + 0011_{2} = -2^{3} + 11_{2}$$

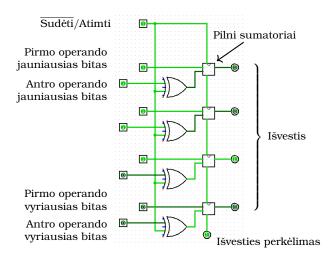
= $1^{-2^{3}} 2^{2} 2^{1} 2^{0}$
= $1^{2} 0 1 1$
= $-2^{3} + 2^{1} + 2^{0} = -8_{10} + 2_{10} + 1_{10}$
= -5_{10}


Saulius Gražulis

Vilnius, 2020 4 / 29

· < A → < 3

Sudėties-atimties ALĮ



Vilnius, 2020 5/29

▶ ∢ ⊒

 $7_{10} - 3_{10} = 0111_2 - 0011_2 = 0111_2 + 1101_2 = 1\ 0100_2 = 4_{10}$

Generatoriai ir trigeriai

Vilnius, 2020 5/29

∃ ► < ∃</p>

Kiti neigiamų skaičių atvaizdavimai

Ženklas/modulis:

$$6_{10} = 0110_2; \quad -6_{10} = 1110_2$$

Papildinių aritmetika:

$$a + (-b) = a + \underbrace{((2^N - 1) - b)}_{\text{one's complement}} + 1 - 2^N$$

Aritmetika su postūmiu K:

$$egin{array}{lll} K=&2^{N-1}& ext{(kaip taisyklė, bet galimos ir kitos reikšmės)}\ b\leftrightarrow &K+b&=2^{N-1}+b\ -b\leftrightarrow K+(-b)=2^{N-1}+(-b) \end{array}$$

Kiti neigiamų skaičių atvaizdavimai

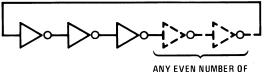
Skaičius	Be ženklo	Pap. iki 2	Pap. iki 1	±Modulis	Postūmis ¹ K
7	111	-	-	-	-
6	110	-	-	-	-
5	101	-	-	-	-
4	100	-	-	-	-
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
0	000	000	000	000	100
-0	-	-	111	100	-
-1	-	111	110	101	011
-2	-	110	101	110	010
-3	-	101	100	111	001
-4	-	100	-	-	000

See also:

Murdocca et al. 1999, chapt. 2; Walker 1996, "Minus Zero"

 ${}^{1}K = 4 = 2^{N-1}$. N = 3

Saulius Gražulis


Generatoriai ir trigeriai

Vilnius, 2020 7 / 29

CMOS Oscillators

Fairchild Semiconductor Application Note 118 October 1974

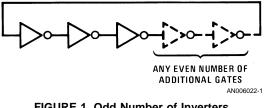
NY EVEN NUMBER OF ADDITIONAL GATES AN006022-1

FIGURE 1. Odd Number of Inverters Will Always Oscillate

(Fairchild Semiconductor 1974)

イロト イポト イヨト

Saulius Gražulis


Generatoriai ir trigeriai

CMOS Oscillators

Fairchild Semiconductor Application Note 118 October 1974

"It then becomes obvious that a "1" chases itself around the ring and the network oscillates." :)

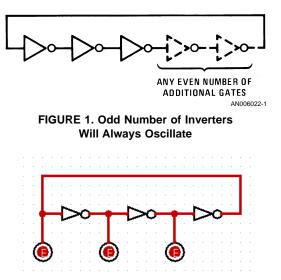
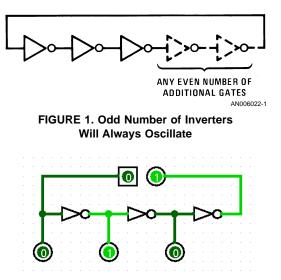
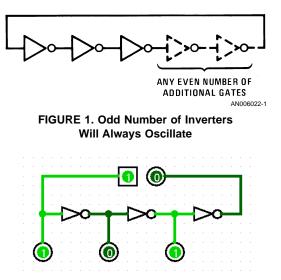
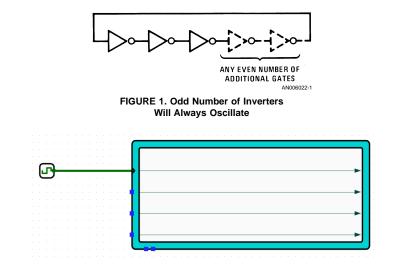


FIGURE 1. Odd Number of Inverters Will Always Oscillate

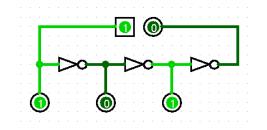

(Fairchild Semiconductor 1974)

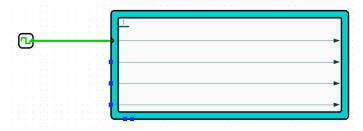
< □ > < 同 > < 回 > < 回 > < 回 >


Žiedinis generatorius



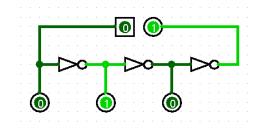
Žiedinis generatorius

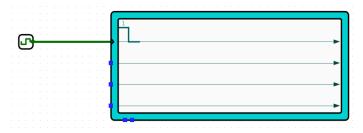

Žiedinis generatorius



Saulius Gražulis

Vilnius, 2020 10 / 29

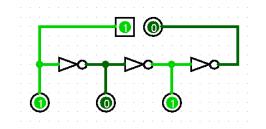


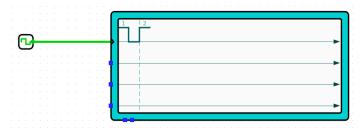


Saulius Gražulis

Vilnius, 2020 10 / 29

æ

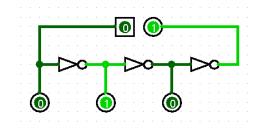


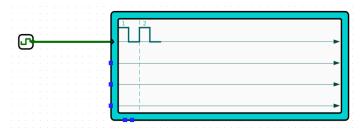


Saulius Gražulis

Vilnius, 2020 10 / 29

æ

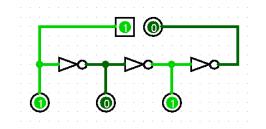


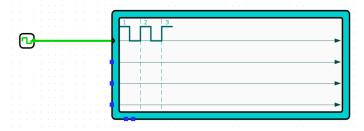


Saulius Gražulis

Vilnius, 2020 10 / 29

æ

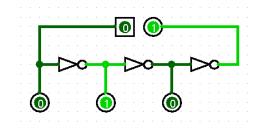


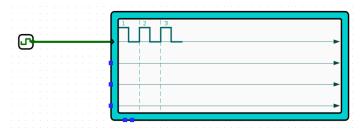


Saulius Gražulis

Vilnius, 2020 10 / 29

æ

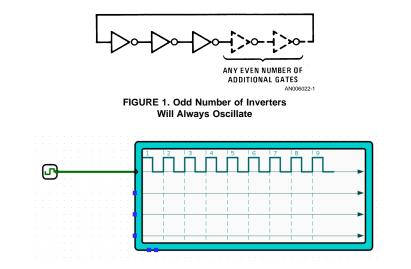




Saulius Gražulis

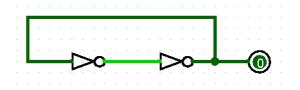
Vilnius, 2020 10 / 29

æ



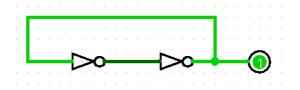
Saulius Gražulis

Vilnius, 2020 10 / 29


æ

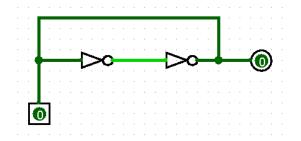
Saulius Gražulis

Vilnius, 2020 10/29


イロト イヨト イヨト イヨ

Saulius Gražulis

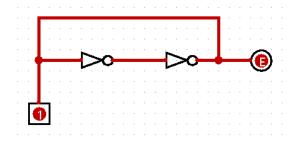
Generatoriai ir trigeriai


Vilnius, 2020 11/29

Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 11/29

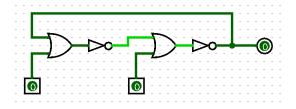


Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 1

11/29

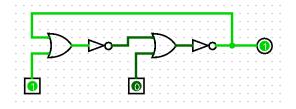


Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 1

11/29

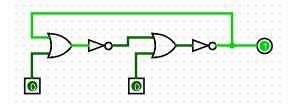


Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 12 / 29

3 1 4

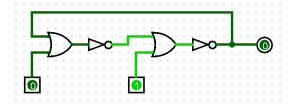


Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 12 / 29

→ Ξ →

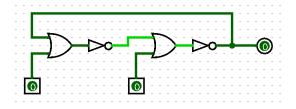


Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 12 / 29

3 1 4

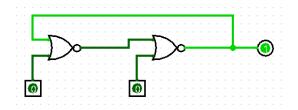

Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 12 / 29

→ ∃ →

Lyginis inverterių skaičius Būsenos nustatymas

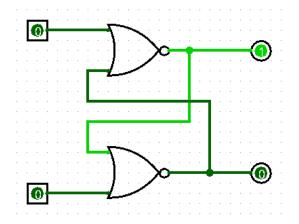

Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 12 / 29

3 1 4

RS trigeris iš ARBA-NE ventilių

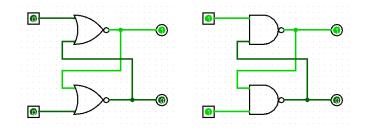


Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 13 / 29

RS trigeris iš ARBA-NE ventilių

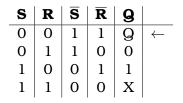

Saulius Gražulis

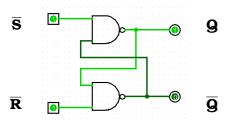
Generatoriai ir trigeriai

Vilnius, 2020 13

13/29

RS trigeris iš ARBA-NE arba IR-NE ventilių

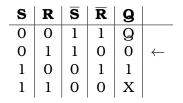


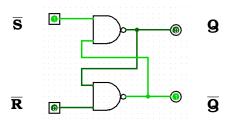

Saulius Gražulis

Generatoriai ir trigeriai

Vilnius, 2020 14 / 29

イロト イ理ト イヨト イヨト

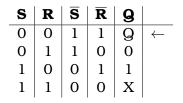

Saulius Gražulis

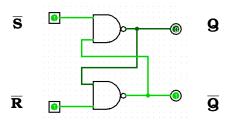

Generatoriai ir trigeriai

Vilnius, 2020

イロト イポト イモト イモト

15/29

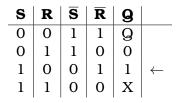

Saulius Gražulis

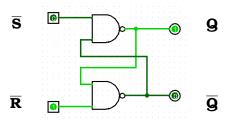

Generatoriai ir trigeriai

Vilnius, 2020

イロト イポト イモト イモト

15/29

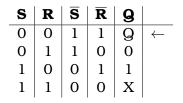

Saulius Gražulis

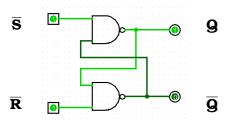

Generatoriai ir trigeriai

Vilnius, 2020

イロト イポト イモト イモト

15/29


Saulius Gražulis

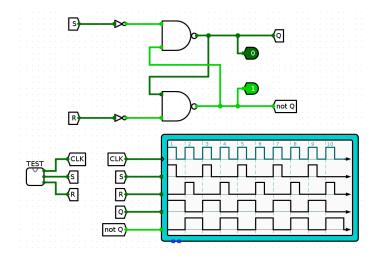

Generatoriai ir trigeriai

Vilnius, 2020

イロト イポト イモト イモト

15/29

Saulius Gražulis

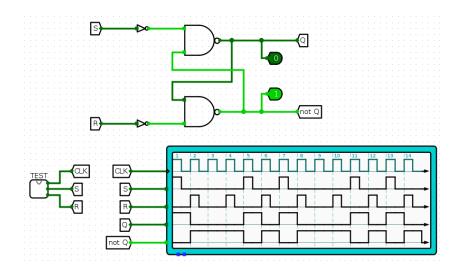

Generatoriai ir trigeriai

Vilnius, 2020

イロト イポト イモト イモト

15/29

RS trigerio įtampos epiūros

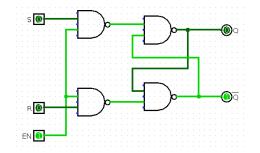


Vilnius, 2020 16 / 29

æ

イロト イポト イヨト イヨト

RS trigerio įtampos epiūros



Vilnius, 2020 17/29

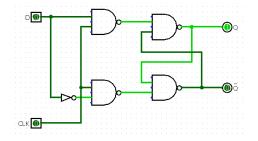
æ

イロト イ理ト イヨト イヨト

Valdomas RS trigeris

Saulius Gražulis

Generatoriai ir trigeriai


Vilnius, 2020 18

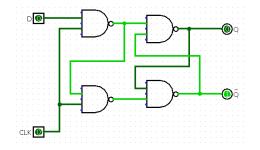
æ

ヘロト 人間 ト 人居 ト 人居 ト

18/29

D trigeris (užsklanda)

Saulius Gražulis


Generatoriai ir trigeriai

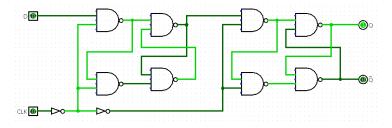
Vilnius, 2020 19

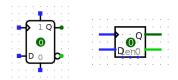
イロト イヨト イヨト イヨト

19/29

D trigeris (užsklanda)

Saulius Gražulis


Generatoriai ir trigeriai


Vilnius, 2020 1

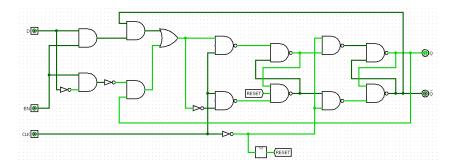
イロト イヨト イヨト イヨト

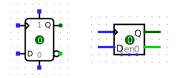
19/29

MS D trigeris (valdomas frontu)

Saul	lius	Gražu	ilis

Generatoriai ir trigeriai

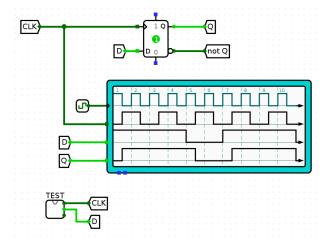

Vilnius, 2020


æ

20/29

イロト イポト イモト イモト

MS D trigeris (valdomas frontu)

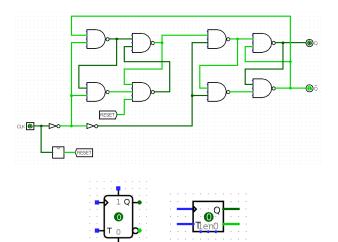

Saulius Gražulis

Vilnius, 2020 20 / 29

æ

ヘロト 人間 ト 人間 ト 人間 ト

MS D trigerio veikimas


Saulius Gražulis

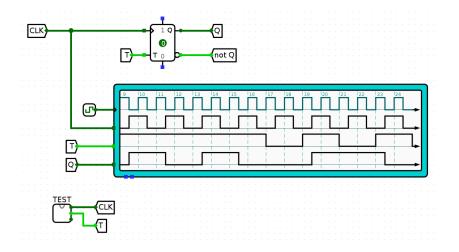
Vilnius, 2020 21 / 29

2

イロト イロト イヨト イヨト

T trigeris

Saulius Gražulis

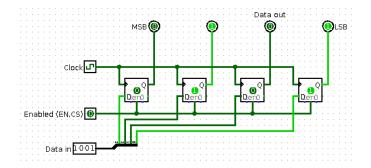

Generatoriai ir trigeriai

Vilnius, 2020 22 / 29

æ

イロト イ理ト イヨト イヨト

T trigerio veikimas

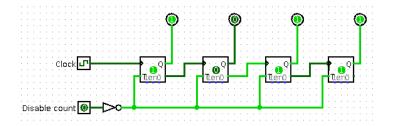

Saulius Gražulis

Vilnius, 2020 23 / 29

æ

500

イロト イヨト イヨト イヨト


Saulius Gražulis

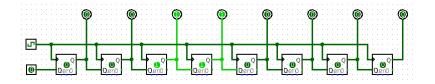
Generatoriai ir trigeriai

Vilnius, 2020 24 / 29

2

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Saulius Gražulis


Generatoriai ir trigeriai

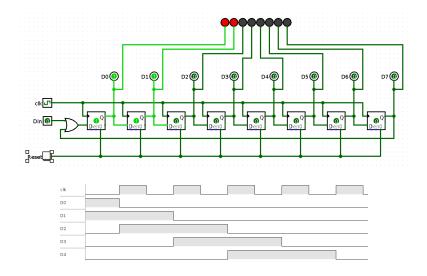
Vilnius, 2020 25 / 29

æ

イロト イポト イヨト イヨ

Postūmio registrai

Saulius Gražulis


Generatoriai ir trigeriai

Vilnius, 2020 26 / 29

æ

イロト イヨト イヨト イヨ

Žiediniai postūmio registrai

Saulius Gražulis

Vilnius, 2020 27 / 29

æ

イロト イポト イヨト イヨ

- Neigiami sveiki skaičiai šiuolaikiniuose kompiuteriuose atvaizduojami papildomuoju kodu, bet įmanomi ir kiti atvaizdavimo metodai.
- Šiuolaikiniai kompiuteriai yra sinchroniniai jie naudoja taktų generatorių visos grandinėms valdyti.
- Generatoriams ir atminties ląstelėms būtinas grįžtamasis ryšys.
- Iš pagrindinės RS trigerio schemos padaromos D- ir Ttrigerių schemos, valdomos signalo lygiu arba frontu.
- Iš D- ir T-trigerių toliau konstruojami registrai ir skaitikliai – esminiai kompiuterių mazgai.

く 伺 ト く ヨ ト く ヨ ト

- Fairchild Semiconductor (1974). CMOS oscillators. Tech. rep. ON Semiconductor. URL: https://www.onsemi.com/pub/Collateral/AN-118.pdf.pdf.
- Murdocca, Miles J. et al. (1999). Principles of Computer Architecture. Prentice Hall.
- Walker, John (Aug. 19, 1996). *Minus zero*. eng. URL: http://www.fourmilab.ch/documents/univac/minuszero.html.

(4月) トイヨト イヨト