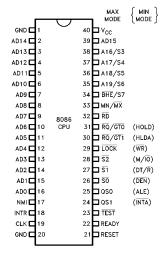
Intel x86 CPU architecture

Saulius Gražulis

Vilnius, 2020

Vilnius University, Faculty of Mathematics and Informatics Institute of Informatics

This set of slides may be copied and used as specified in the Attribution-ShareAlike 4.0 International license



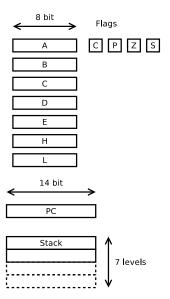
What is a processor architecture?

Architecture visible to programmer:

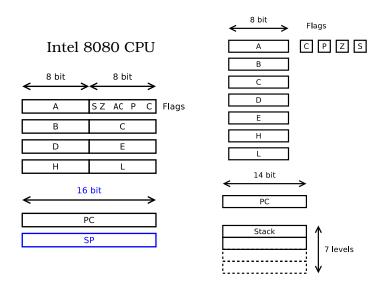
- The CPU registers visible to programmer
- Memory addressing
- Data formats
- Processor instruction set
- Input-output
- Interrupt processing

A bit of history

- 1974 8080 8-bit; Addr: 16 bit (64K)
- 1978 8086, 8088 16-bit; Addr: 20 bit (1MB)
- 1982 Intel[®] 286 16-bit (protected memory);
 Addr: 24 bit (16MB)
- 1985 Intel386TM 32-bit; Addr: 32 bit (4GB);
- 1989 Intel486TM 32-bit (+FPU, more instr.);
 Addr: 32 bit (4GB);
- 1993 Intel[®] Pentium[®] 32-bit (faster, more instr.); Addr: 32 bit (4GB);
- 1995-1999 The P6 Family of Processors 32-bit;
 Addr: 32 bit (4GB);
- 1999 AMD Opteron 64-bit; Addr: up to 64 bit
- 2001-2007 The Intel[®] Xeon[®] 64-bit, Addr: up to 64 bit.

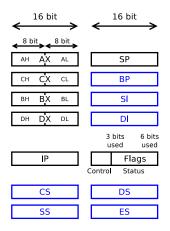

(Intel 2020)

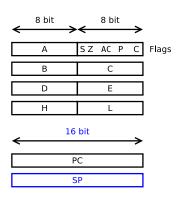
(Intel 1990)


Notational Conventions

- #GP(0) An instruction exception—in this example, a general-protection exception with error code of 0.
- 1011b A binary value—in this example, a 4-bit value.
- DEAD_BEEFh A hexadecimal value. Underscore characters may be inserted to improve readability.
- 128 Decimal number, unless the context indicates otherwise.
- 7:4 A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted to indicate gaps.

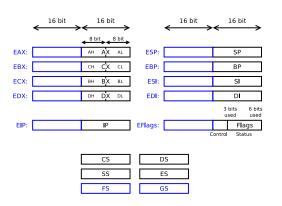
Registers (x86) – history: 8008

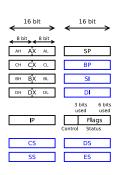



Registers (x86) – history: 8080

Registers (x86)

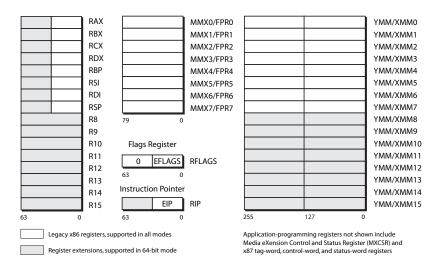
Intel 8086 CPU



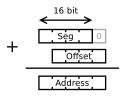

(Intel 1979)

https://www.youtube.com/watch?v=7xwjjolDnwg

Registers (80386)


Intel 80386 CPU

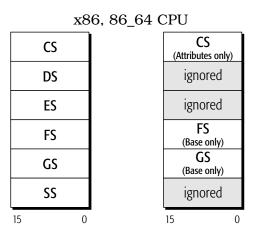
https://www.youtube.com/watch?v=7xwjjolDnwg


Registers (x86_64)

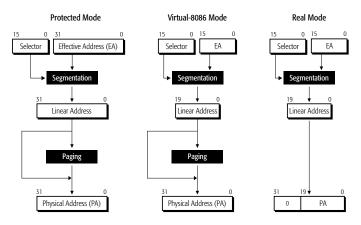

(AMD 2017), here and further: reproduced with AMD permission

Segmented addressing

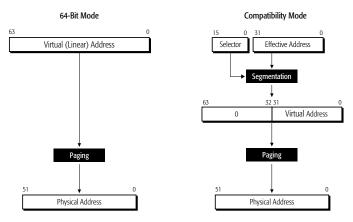
Segment address is shifted by 4 bits and added to the offset:



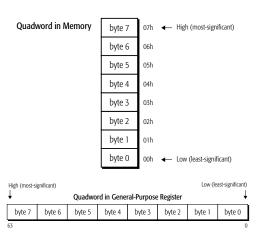
Memory layout



Segment Registers

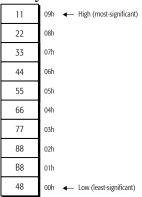

Legacy mode memory management

x86, 86_64 CPU



Long-mode memory management

x86, 86_64 CPU

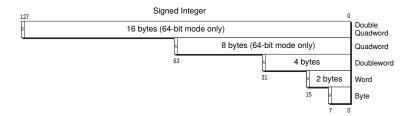


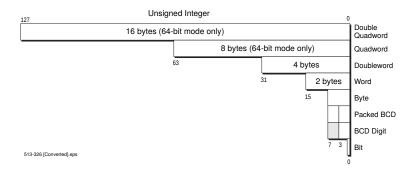
Byte order

Instructions in memory

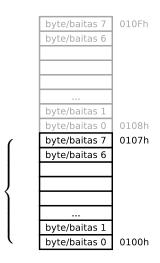
Example of 10-Byte Instruction in Memory

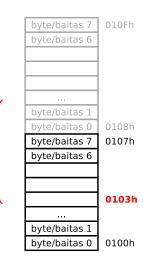
Complex address calculation (protected mode)


Near and far pointers


Far Pointer

Selector Effective Address (EA)


Basic data types


Basic data types

Memory alignment

Memory alignment

Take-home message

- The x86 processor architecture stayed compatible (on the binary code level!) with the original 8086/8088 for more than 40 years (!)
- Aligned memory access is as a rule faster for all CPU architectures and required for some of them
- The x86_64 architecture features flat memory model, 16 64-bit general purpose registers, 16 vector registers and 8 floating point registers

References

- AMD (Dec. 2017). AMD64 Architecture Programmer's Manual, Volume 1: Application Programming, revision 3.22. AMD. URL:
 - https://www.amd.com/system/files/TechDocs/24592.pdf.
- Intel (Oct. 1979). Intel 8086 Family User's Manual. Intel Corporation. URL: https://edge.edx.org/c4x/BITSPilani/EEE231/asset/8086_family_Users_Manual_1_.pdf.
- (1990). 8086 16-bit HMOS microprocessor. Intel Corporation. URL: https://www.manualslib.com/download/77669/Intel-8086.html.
- (May 2020). Intel® 64 and IA-32 Architectures Software Developer's Manual. Vol. 1-5. Intel Corporation. URL: https:
 - //software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html.