Floating point numbers

Saulius Gražulis

Vilnius, 2021

Vilnius University, Faculty of Mathematics and Informatics Institute of Informatics

This set of slides may be copied and used as specified in the Attribution-ShareAlike 4.0 International license

Saulius Gražulis

Floating point numbers

Vilnius, 2021 1 / 26

$$602 \underbrace{00...0}_{21 \text{ times}} = 6.02 \times 10^{23}$$

$$\pm d_0.d_1d_2\dots d_{p-1} \times \beta^e = \sum_{i=0}^{p-1} d_i\beta^{-i} \times \beta^e, (0 \le d_i < \beta)$$
$$\underbrace{602 \times 10^{21}}_{unnormalised} = \underbrace{6.02 \times 10^{23}}_{normalised} = \underbrace{0.602 \times 10^{24}}_{unnormalised}$$

Floating point numbers

$$\pm d_0.d_1d_2...d_{p-1} imes eta^e = \pm \sum_{i=0}^{p-1} d_ieta^{-i} imes eta^e, (0 \le d_i < eta)$$
 $eta = 2$

 $0.1_{10} \approx +1.10011001100110011001101_2 \times 2^{-4}$

- Sign (of the significand)
- Exponent
- Significand (mantissa, fraction)

- Binary ($\beta = 2$, (IEEE 1985)) and decimal ($\beta = 10$, (IEEE 2008)) formats
- Single, double, single-extended and double-extended precision (IEEE 1985), half-precision (16 bits), quad precision (128 bits) and octuple precision (256 bits) and longer interchange formats (IEEE 2008)
- Special values: not-a-number(s) (NaN), infinities $(\pm \infty)$, signed zeroes (± 0)
- Denormalised numbers
- Roundoff control
- Masked exceptions
- Specifies precision of operations

IEEE 754 Standard encoding

- Significand: represented as signed magnitude
- Exponent: uses *biased* representation (excess $2^{n-1} 1$ for *n* exponent bits)
- Exponent range: -(2ⁿ⁻¹ 2) +(2ⁿ⁻¹ 1)
 (e.g. -126 +127 for the 8 bit eksponent)
- Fraction (significand): hidden (assumed) bit used for normalised numbers

 $0.1_{10} \approx 1.10011001100110011001101_2 \times 2^{-4}$

Example: 0.1 in single precision FP:

p: 23 + 1 bit e: -126 - 127 (8 bits); bias = $2^{8-1} - 1 = 128 - 1 = 127$ f = 1.1001100110011001101 $e = 127 + (-4) = 123_{10} = 01111011_2$

0 01111011 10011001100110011001101

$$0.15625_{10} = \underbrace{0.00101_2}_{\text{not normalised}} = \pm 1.01 \times 2^{-3}$$

$$e = 127 + (-3) = 124_{10} = 01111100_2$$

Representation:

Float 32 (float; single precision):

 $1.0_2 \times 2^{-130_{10}}$

For a single precision floating point,

 $e_{\min} = -126_{10} \Rightarrow$ Can not normalise!

Note that:

$$e_{\min} + bias = 127_{10} + (-126_{10}) = 1 = 0000_{0001_{2}}$$

For the 0000_0000 biased exponent, interpretation is changed:

 $0\ 0000\ 0001\underbrace{00\ldots0}_{19\ \text{zeros}} = +0.0001_2 \times 2^{-126_{10}} = +0.0625_{10} \times 2^{-126_{10}}$

exponent is -126, **not** -127 !

Saulius Gražulis

Why bother about denormalised numbers

Gradual underflow

(Engelen 2008)

イロト イポト イヨト イヨト 二日

Saulius Gražulis

Vilnius, 2021 9/26

Still not used the all 1s exponent, 1111_1111

$$0 11111111 \underbrace{00\ldots0}_{23 \text{ zeros}} = \infty$$

$$1 11111111 \underbrace{00...0}_{22 \text{ gamma}} = -\infty$$

23 zeros

$$\frac{1}{0} = +\infty; \quad \frac{1}{+\infty} = +0$$

$$\frac{1}{-0} = -\infty; \quad \frac{1}{-\infty} = -0$$

Saulius Gražulis

Vilnius, 2021 10 / 26

æ

Not a number: NaN

Operations that produce NaN:

Operation	NaN produced by
+	$\infty + (-\infty)$
×	$0 imes \infty$
/	$0/0,\infty/\infty$
rem	$0 \text{ rem } 0, \infty \text{ rem } \infty$
	$\sqrt{x} \forall x < 0$

(Goldberg 1991)

• • = • • = •

Saulius Gražulis

Any comparison to NaN returns false ⇒ when *x* < NaN fails, this does not imply *x* >= NaN

• Can not sort array of floats with NaNs

(Engelen 2008)

For single precision FP, NaNs contain 21 "free" bits For double precision FP, NaNs contain 50 "free" bits

- Dynamic languages (e.g. JavaScript) use "boxed NaN values"
- sNaN is useful for catching uninitialised values
- qNaN can represent unknown/unspecified values

→ < Ξ → <</p>

Summary: IEEE 754 special values

Exponent	Fraction	Denotes
$e = e_{\min} - 1$	f = 0	± 0
$e = e_{\min} - 1$	$f \neq 0$	$\pm 0.f \times 2^{e_{\min}}$
$e_{\min} \le e \le e_{\max}$	$f = \forall n$	$\pm 1.f \times 2^e$
$e = e_{\max} + 1$	f = 0	$\pm\infty$
$e = e_{\max} + 1$	$f \neq 0$,	NaN

(Goldberg 1991)

32-bit number

Vectorization: Stannered, CC BY-SA 3.0 via Wikimedia Commons

64-bit number

https://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

Saulius Gražulis

Vilnius, 2021 16 / 26

BillF4, CC BY-SA 3.0, via Wikimedia Commons

- No hidden bit
- Just enough precision to compute x^y
- Intended for intermediate results only

x87 Status	ST(6)	fpr0
Word	ST(7)	fpr1
top →	ST(0)	fpr2
13 11	ST(1)	fpr3
	ST(2)	fpr4
	ST(3)	fpr5
	ST(4)	fpr6
	ST(5)	fpr7
	79	0

.

513-134.eps

Figure 6-2. x87 Physical and Stack Registers

æ

Floating point status flags

15	14	13 12 11	10	9	8	7	6	5	4	3	2	1	0
в	C 3	TOP	C 2	C 1	C 0	E S	S F	P E	U E	0 E	Z E	D E	I E

Bits	Mnemonic	Description
15	В	x87 Floating-Point Unit Busy
14	C3	Condition Code
13:11	TOP	Top of Stack Pointer 000 = FPR0 111 = FPR7
10	C2	Condition Code
9	C1	Condition Code
8	C0	Condition Code
7	ES	Exception Status
6	SF	Stack Fault
	Exc	ception Flags
5	PE	Precision Exception
4	UE	Underflow Exception
3	OE	Overflow Exception
2	ZE	Zero-Divide Exception
1	DE	Denormalized-Operand Exception
0	IE	Invalid-Operation Exception

Figure 6-3. x87 Status Word Register (FSW)

(AMD 2017)

Saulius Gražulis

æ

19/26

イロト イポト イヨト イヨト

Floating point control flags

	15 14 13	12	11 10	9	8	7	6	5	4	3	2	1	0	
	Reserved	Y	R C	 (2	R	es	P M	U M	O M	Z M	D M	I M	
Bits	Mnemor	nic					I	Des	crip	tior	ı			
12	Y		Infin	ity I	Bit (802	287	con	npa	tibil	ity)			
11:10	RC		Rou	ndiı	ng (Con	trol							
9:8	PC Precision Control													
			#MF	Ex	сер	tio	n M	ask	s					
5	PM		Prec	isic	n E	xce	ptic	on N	/las	k				
4	UM		Und	erfl	ow	Exc	epti	ion	Ma	sk				
3	OM		Ove	rflo	wΕ	хсе	ptio	n N	lasł	C				
2	ZM		Zerc	-Di	vide	e E>	(cep	otior	n M	ask				
1	DM		Den	orm	naliz	ed-	Op	erar	nd E	Exce	epti	on I	Mas	k
0	IM		Inva	lid-	Ope	erati	ion I	Exc	ept	ion	Ма	sk		

Figure 6-4. x87 Control Word Register (FCW)

(AMD 2017)

э

< □ > < 同 > < 回 > < 回 > < 回 >

• Guaranteed precision of single operations Except where stated otherwise, every operation shall be performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that result according to one of the attributes in this clause.

(IEEE 2019), sect. 4.3

- Each representable number has a single representation
- FP numbers are ordered as signed magnitude integers! All of the possible single-precision entities are well ordered in the natural lexicographic ordering of their machine representations interpreted as sign-magnitude binary integers

(Cody 1981)

A (10) A (10) A (10) A

gcc -c -S \ -m16 -O3 --omit-frame-pointer \ -o single-precision.asm single-precision.c

float parallel(float x, float y)
{
 return x*y/(x + y);
}

parallel: .LFB0:	
.cfi_st	artproc
flds	4(%esp)
flds	8(%esp)
fld	%st(1)
fmul	%st(1), %st
fxch	%st(2)
faddp	%st, %st(1)
fdivrp	%st, %st(1)
ret	

╗▶ ∢ 글▶ ∢ 글

```
float parallel( float x, float y )
{
    return x*y/(x + y);
}
```

<pre>parallel: .LFB0:</pre>			
. CI 1	_startproc		
mova	ps %xmm0,	%xmm2	
adds	s %xmm1,	%xmm0	
muls	s %xmm1,	%xmm2	
divs	s %xmm0,	%xmm2	
mova	ps %xmm2,	%xmm0	
ret			

Vilnius, 2021 23 / 26

伺い イヨト イヨ

- Rational arithmetic
- Tapered floating point
- J. Gustafson's Unum number system (Gustafson 2015)
- Logarithmic number systems (Coleman et al. 2008; Ismail et al. 2011)

- Floating point numbers approximate mathematical real numbers
- Usually a normalised representation is used
- Special codes are used for denormalised numbers, infinities, NaNs, ± 0
- Each IEEE 754 floating point (FP) entity has a unique bit representation, and each bit representation represents an FP entity
- Some FP objects (e.g. NaNs) have mathematical properties (e.g. in comparisons) different from those of regular real numbers
- Alternatives and further developments of FP arithmetic are being researched

- 本間 と くき とくき とうき

References

- AMD (Dec. 2017). AMD64 Architecture Programmer's Manual, Volume 1: Application Programming, revision 3.22. AMD. URL: https://www.amd.com/system/files/TechDocs/24592.pdf.
- Cody, W. J. (Mar. 1981). "Analysis of proposals for the floating-point standard". In: *Computer* 14.3, pp. 63–68. DOI: 10.1109/c-m.1981.220379.
- Coleman, John N. et al. (2008). "The European Logarithmic Microprocesor". In: *IEEE Transactions on Computers* 57.4, pp. 532–546. DOI: 10.1109/tc.2007.70791.
- Engelen, Robert van (2008). Floating point operations and SIMD extensions. URL: http://www.cs.fsu.edu/~engelen/courses/HPC-adv-2008/FP.pdf.
- Goldberg, David (1991). "What every computer scientist should know about floating-point arithmetic". In: *ACM Comput. Surv.* 23, pp. 5–48. ISSN: 0360-0300. DOI: 10.1145/103162.103163. URL: http://doi.acm.org/10.1145/103162.103163.
- Gustafson, John L. (Aug. 2015). The End of Error Unum Computing by Gustafson, John L. Vol. 1. CRC Press. ISBN: 978-14-8223-987-4.
- IEEE (Oct. 1985). IEEE standard for binary floating-point arithmetic. IEEE. DOI: 10.1109/ieeestd.1985.82928.
- (2008). IEEE standard for floating-point arithmetic. DOI: 10.1109/ieeestd.2008.4610935.
- (2019). IEEE standard for floating-point arithmetic. IEEE. DOI: 10.1109/ieeestd.2019.8766229.
- Ismail, R. Che et al. (July 2011). "ROM-less LNS". In: 2011 IEEE 20th Symposium on Computer Arithmetic. IEEE, pp. 43–51. DOI: 10.1109/arith.2011.15.