Slankaus kablelio skaičiai

Saulius Gražulis

Vilnius, 2021

Vilniaus universitetas, Matematikos ir informatikos fakultetas Informatikos institutas

Šį skaidrių rinkinį galima kopijuoti, kaip nurodyta Creative Commons Attribution-ShareAlike 4.0 International licenzijoje

Saulius Gražulis

Slankaus kablelio skaičiai

∃ ► < ∃</p>

Eksponentinis skaičių užrašymas

$$602 \underbrace{00...0}_{21 \text{ karty}} = 6.02 \times 10^{23}$$

$$\pm d_0.d_1d_2\dots d_{p-1} \times \beta^e = \sum_{i=0}^{p-1} d_i\beta^{-i} \times \beta^e, (0 \le d_i < \beta)$$

$$\underbrace{602 \times 10^{21}}_{nenormalizuotas} = \underbrace{6.02 \times 10^{23}}_{normalizuotas} = \underbrace{0.602 \times 10^{24}}_{nenormalizuotas}$$

Slankaus kablelio skaičiai

$$\pm d_0.d_1d_2...d_{p-1} imes eta^e = \pm \sum_{i=0}^{p-1} d_i eta^{-i} imes eta^e, (0 \le d_i < eta)$$
 $eta = 2$

 $0.1_{10} \approx +1.10011001100110011001101_2 \times 2^{-4}$

- (Trupmenos) ženklas
- Laipsnio rodiklis
- Trupmena (mantisė; angl. "significand")

- Dvejetainiai ($\beta = 2$, (IEEE 1985)) ir dešimtainiai ($\beta = 10$, (IEEE 2008)) formatai
- Viengubo, dvigubo tikslumo (IEEE 1985), pusinio, keturgubo pagrindinai bei aštuongubo tikslumo ir ilgesni mainų standartai (IEEE 2008)
- Specialios reikšmės: neskaičiai (NaN), begalybės ($\pm \infty$), nuliai (± 0)
- Denormalizuoti skaičiai
- Apvalinimo valdymas
- Maskuojamos išimtinės situacijos
- Nustato operacijų tikslumą

IEEE 754 standarto kodavimas

- Mantisė: absoliutus dydis su ženklu
- Eksponentė: *skaičius su postūmiu* (postūmis = $2^{n-1} 1 n$ bitų eksponentei)
- Eksponentės diapazonas: $-(2^{n-1}-2) +(2^{n-1}-1)$ (pvz. 8 bitų eksponentei: -126 - +127)
- Trupmena (mantisė): normalizuotiems skaičiams "paslėptas" bitas

 $0.1_{10} \approx 1.10011001100110011001101_2 \times 2^{-4}$

Pavyzdys: 0.1 viengubo tikslumo s.k.:

p: 23 + 1 bitas e: -126 - 127 (8 bitai); postūmis = $2^{8-1} - 1 = 128 - 1 = 127$ f = 1.10011001100110011001101 $e = 127 + (-4) = 123_{10} = 01111011_2$

0 01111011 10011001100110011001101

$$0.15625_{10} = \underbrace{0.00101_2}_{\text{nenormalizuotas}} = \pm 1.01 \times 2^{-3}$$

$$e = 127 + (-3) = 124_{10} = 01111100_2$$

Atvaizdavimas:

Float 32 (float; single precision):

 $1.0_2 \times 2^{-130_{10}}$

Viengubo tikslumo slankiam kableliui,

 $e_{\min} = -126_{10} \Rightarrow$ Neįmanoma normalizuoti! Atkreipkite dėmesį, kad:

 $e_{\min} + \text{ postumis } = 127_{10} + (-126_{10}) = 1 = 0000_{0001_{2}}$

Pastumtai eksponentei 0000_0000, interpretacija pasikeičia:

 $0\ 0000\ 0001\ \underbrace{00\ldots 0}_{19\ \text{nuliy}} = +0.0001_2 \times 2^{-126_{10}} = +0.0625_{10} \times 2^{-126_{10}}$

eksponentė yra –126, **ne** –127 !

Saulius Gražulis

Kam reikalingi denormalizuoti skaičiai

Palaipsninis tikslumo praradimas

Nuliai

(Engelen 2008)

イロト イタト イヨト イヨト 一日

Saulius Gražulis

Liko nepanaudota eksponentė su visais vienetais, 1111_111

0 1111 1111
$$\underbrace{00...0}_{23 \text{ nuliai}} = \infty$$

1 1111 1111 $\underbrace{00...0}_{23 \text{ nuliai}} = -\infty$
 $\frac{1}{0} = +\infty; \quad \frac{1}{+\infty} = +0$
 $\frac{1}{-0} = -\infty; \quad \frac{1}{-\infty} = -0$

э

Neskaičiai: NaN

ne visi 23 bitai yra nuliai

Operacijos, kurios grąžina NaN:

Operacija	NaN grąžina
+	$\infty + (-\infty)$
×	$0 imes \infty$
/	$0/0,\infty/\infty$
rem	$0 \text{ rem } 0, \infty \text{ rem } \infty$
	$\sqrt{x} \forall x < 0$

(Goldberg 1991)

伺下 イヨト イヨト

• Bet koks palyginimas su NaN grąžina False, todėl kai x < NaN yra neteisingas, dar nereiškia kad x >= NaN

• Negalima surikiuoti realių skaičių masyvo su NaN

(Engelen 2008)

Viengubo tikslumo skaičiams, NaN reikšmės turi 21 "laisvų" bitų

Dvigubo tikslumo skaičiams, NaN reikšmės turi 50 "laisvų" bitų

- Dinaminės kalbos (pvz. JavaScript) naudoja "boxed NaN" reikšmes
- sNaN naudingi neinicializuotoms reikšmėms pagauti
- qNaN gali atvaizduoti nežinomas reikšmes

Apibendrinimas: IEEE 754 specialios reikšmės

Eskponentė	Trupmena	Reiškia
$e = e_{\min} - 1$	f = 0	± 0
$e = e_{\min} - 1$	$f \neq 0$	$\pm 0.f \times 2^{e_{\min}}$
$e_{\min} \le e \le e_{\max}$	$f = \forall n$	$\pm 1.f \times 2^e$
$e = e_{\max} + 1$	f = 0	$\pm\infty$
$e = e_{\max} + 1$	$f \neq 0$,	NaN

(Goldberg 1991)

32-bitų skaičius

Vectorization: Stannered, CC BY-SA 3.0 via Wikimedia Commons

64-bitų skaičius

https://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg

3 🔺 🔸

Intel 80 bitų išplėsto tikslumo skaičiai

BillF4, CC BY-SA 3.0, via Wikimedia Commons

- Nėra paslėpto bito
- Pakankamas tikslumas suskaičiuoti x^y
- Skirti tarpiniams rezultatams

Intel x87 slankaus kablelio registrai

x87 Status Word TOP I3 II → ST(0) ST(1) ST(2) ST(2) ST(3)	ST(6)	fpr0
Word	ST(7)	fpr1
top →	ST(0)	fpr2
13 11	ST(1)	fpr3
	ST(2)	fpr4
	ST(3)	fpr5
	ST(4)	fpr6
	ST(5)	fpr7
	79	0

513-134.eps

Figure 6-2. x87 Physical and Stack Registers

18/26

Slankaus kablelio būsenos registrai

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
в	C 3	1	FOP		C 2	C 1	C 0	E S	S F	P E	U E	0 E	Z E	D E	I E

Bits	Mnemonic	Description
15	В	x87 Floating-Point Unit Busy
14	C3	Condition Code
13:11	TOP	Top of Stack Pointer 000 = FPR0 111 = FPR7
10	C2	Condition Code
9	C1	Condition Code
8	C0	Condition Code
7	ES	Exception Status
6	SF	Stack Fault
	Exc	eption Flags
5	PE	Precision Exception
4	UE	Underflow Exception
3	OE	Overflow Exception
2	ZE	Zero-Divide Exception
1	DE	Denormalized-Operand Exception
0	IE	Invalid-Operation Exception

Figure 6-3. x87 Status Word Register (FSW)

Saulius Gražulis

э

19/26

イロト イポト イヨト イヨト

Slankaus kablelio valdymo registrai

	15 14 13	12	11 10	9	8	7	6	5	4	3	2	1	0	
	Reserved	Y	R C	 (2	R	es	P M	U M	0 M	Z M	D M	I M	
Bits	Mnemor	nic					I	Des	crip	tior	ı			
12	Y		Infin	ity I	Bit (802	287	con	npa	tibil	ity)			
11:10	RC		Rou	ndiı	ng (Con	trol							
9:8	PC		Prec	Precision Co										
			#MF	Ex	сер	tio	n M	ask	s					
5	PM		Prec	isic	n E	xce	ptic	on N	/las	k				
4	UM		Und	erfl	ow	Exc	epti	ion	Ma	sk				
3	OM		Ove	rflo	wΕ	xce	ptio	n N	lasł	< (
2	ZM		Zerc	-Di	vide	E>	(cep	otior	n M	ask				
1	DM		Denormalized-Operand Exception Mask					k						
0	IM		Inva	lid-	Ope	erati	ion I	Exc	ept	ion	Ма	sk		

Figure 6-4. x87 Control Word Register (FCW)

(AMD 2017)

• Garantuotas atskirų operacijų tikslumas Except where stated otherwise, every operation shall be performed as if it first produced an intermediate result correct to infinite precision and with unbounded range, and then rounded that result according to one of the attributes in this clause.

(IEEE 2019), sect. 4.3

- Kiekvienas išreiškiamas skaičius atvaizduojamas vieninteliu būdu
- FP skaičiai surikiuoti kaip sveiki skaičiai modulio su ženklu atvaizdavime! All of the possible single-precision entities are well ordered in the natural lexicographic ordering of their machine representations interpreted as sign-magnitude binary integers

(Cody 1981)

gcc -c -S \ -m16 -O3 --omit-frame-pointer \ -o single-precision.asm single-precision.c

float parallel(float x, float y)
{
 return x*y/(x + y);
}

parallel: .LFB0:	
.cfi_st	artproc
flds	4(%esp)
flds	8(%esp)
fld	%st(1)
fmul	%st(1), %st
fxch	%st(2)
faddp	%st, %st(1)
fdivrp	%st, %st(1)
ret	

```
float parallel( float x, float y )
{
    return x*y/(x + y);
}
```

parallel .LFB0:	: cfi st	artproc	
	movaps addss mulss divss movaps ret	<pre>%xmm0, %xmm1, %xmm1, %xmm0, %xmm2,</pre>	%xmm2 %xmm0 %xmm2 %xmm2 %xmm0

Vilnius, 2021 23 / 26

- Racionalių skaičių aritmetika
- Kintamo ilgio slankaus kablelio aritmetika
- J. Gustafsono Unum skaičių sistema (Gustafson 2015)
- Logaritminės skaičių sistemos (Coleman et al. 2008; Ismail et al. 2011)

- Slankaus kablelio skaičiai yra realių skaičių artiniai
- Įprastose situacijose naudojami normalizuoti skaičiai
- Naudojami specialūs kodai denormalizuotiems skaičiams, begalybei, NaN ± 0
- Kiekvienas IEEE 754 slankaus kablelio (s.k.) objektas turi unikalų atvaizdavimą, ir kiekvienas dvejetainis kodas vaizduoja s.k. objektą
- Kai kurie s.k. objektai (pvz. NaN) turi savybes, kurios skiriasi nuo įprastų realių skaičių savybių
- Aktyviai tyrinėjamos naujos s.k. skaičių alternatyvos

Šaltiniai

- AMD (Dec. 2017). AMD64 Architecture Programmer's Manual, Volume 1: Application Programming, revision 3.22. AMD. URL: https://www.amd.com/system/files/TechDocs/24592.pdf.
- Cody, W. J. (Mar. 1981). "Analysis of proposals for the floating-point standard". In: *Computer* 14.3, pp. 63–68. DOI: 10.1109/c-m.1981.220379.
- Coleman, John N. et al. (2008). "The European Logarithmic Microprocesor". In: *IEEE Transactions on Computers* 57.4, pp. 532–546. DOI: 10.1109/tc.2007.70791.
- Engelen, Robert van (2008). Floating point operations and SIMD extensions. URL: http://www.cs.fsu.edu/~engelen/courses/HPC-adv-2008/FP.pdf.
- Goldberg, David (1991). "What every computer scientist should know about floating-point arithmetic". In: *ACM Comput. Surv.* 23, pp. 5–48. ISSN: 0360-0300. DOI: 10.1145/103162.103163. URL: http://doi.acm.org/10.1145/103162.103163.
- Gustafson, John L. (Aug. 2015). The End of Error Unum Computing by Gustafson, John L. Vol. 1. CRC Press. ISBN: 978-14-8223-987-4.
- IEEE (Oct. 1985). IEEE standard for binary floating-point arithmetic. IEEE. DOI: 10.1109/ieeestd.1985.82928.
- (2008). IEEE standard for floating-point arithmetic. DOI: 10.1109/ieeestd.2008.4610935.
- (2019). IEEE standard for floating-point arithmetic. IEEE. DOI: 10.1109/ieeestd.2019.8766229.
- Ismail, R. Che et al. (July 2011). "ROM-less LNS". In: 2011 IEEE 20th Symposium on Computer Arithmetic. IEEE, pp. 43–51. DOI: 10.1109/arith.2011.15.