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x86

Advantages:
Compatibility over 40 years
Fastest possible simultaneous execution of all code, both
old an new
Fastest systems
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x86

Drawbacks:
Large, complicated chips
Large transistor count – large power dissipation
Some obsolete features present just for compatibility
Some functions are duplicated
A lot of features not used in any given application – ballast
A lot of specialised with special behaviour instructions –
difficulties for compiler writers

“AMD’s 80x86 architect, Mike Johnson, famously quipped, “The
x86 really isn’t all that complex—it just doesn’t make a lot of
sense”

(Waterman 2016)
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The case for RISC

“Semiconductor memories are both fast and relatively
inexpensive” (Patterson et al. 2003)
“it is difficult to have ”rational” implementations” (ibid.)

IBM 370: Peuto and Shustek have discovered that a
sequence of load instructions is faster than a load multiple
instruction for fewer than 4 registers; this covers 40% of
cases in typical programs (Patterson et al. 2003; Peuto et al.
1977)
Patterson found that for VAX 11/780 replacing complex
INDEX instruction (calculates address of an array element,
checks bounds) by several simple instructions (COMPARE,
JUMP LESS UNSIGNED, ADD, MUL) can calculate the same
function 45% faster (in special cases, 60% faster!) (Patterson
et al. 2003)
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The case for RISC

“measurements of a particular IBM 360 compiler found that
10 instructions accounted for 80% of all instructions
executed, 16 for 90%, 21 for 95%, and 30 for 99%”1

(Patterson et al. 2003; Alexander et al. 1975).
“pushing a register on the stack with PUSHL R0 is slower
than pushing it with the move instruction MOVL R0,-(SP)
on the VAX 11/78” (Patterson et al. 2003)

1IBM 360 had 8 bit opcodes, so would have no more than 256 different
instructions – with various operands (“IBM System/360 Principles of
Operation”, p. 14)
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RISC

Technical features:

RISC CISC

Instructions Simple: Load/Store
regs, operations only
in regs

Complex tasks for mul-
tiple data types, both in
regs and in memory

Instr. formats Fixed length, two main
types: load/store &
R := R op R

Variable length, may
types: load/store,
R := R op R,
R := R op Mem,
R := Mem op Mem

Registers 16–32 general purpose Specialised or 8–16
general purpose

Adapted from: (Jamil 1995)
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RISC

Design decisions:

RISC CISC

Design objective Trade off program
length, minimise time
to execute instruction

Minimise program
length, maximise
work/instruction

Implementation Hard-wired Microprogrammed

Caching Essential (at least for
code)

Useful (⇒ nowadays,
essential)

Compiler design Find best instruction
ordering & register
allocation

Find best/right
instructions

Philosophy Move all (complicated)
functions to software

Move any useful
software function into
hardware

Adapted from: (Jamil 1995)
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Some RISC machines

Past...
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Some RISC machines

And possibly future...
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RISC-V

Open-standard RISC ISA :)
Is provided under open source licenses
Does not require royalty fees to use
A number of companies are offering or have announced
RISC-V hardware
open source operating systems and tool-chains (compilers,
assemblers) with RISC-V support are available
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RISC-V variants

3 address widths:
RV32
RV64
RV128

Multiple extensions:
I – base integer ISA
M – hardware multiply and divide
A – atomic synchronisation support
F – single precision floating point
D – double precision floating point

RV32G = RV32IMAFD
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RISC-V variants

3 address widths:
RV32
RV64
RV128

More exotic extensions
S – Supervisor mode is implemented
Q – Quad-precision (128 bit) floating point is supported
C – Compressed (i.e., 16 bit) instructions are supported
E – Embedded microprocessors, with only 16 registers

RV32G = RV32IMAFD
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RISC-V variants

3 address widths:
RV32
RV64
RV128

Future extensions:
L – Decimal arithmetic instructions
V – Vector arithmetic instructions
P – Packed SIMD instructions
B – Bit manipulation instructions
T – Transactional memory support

RV32G = RV32IMAFD
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Main memory

32-bit, 64-bit or 128-bit (virtual) address widths
Little-endian
Supports unaligned access
Virtual memory: paging
I/O: memory mapped
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RISC-V registers

32 general purpose registers
if floating point is supported, there will be additional 32
floating point registers
“it would be possible to define a non-standard subset
integer RISC-V ISA with 16 registers” (Waterman et al. 2014)
Register widths either 32, 64 or 128 bits
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RISC-V register set
CHAPTER 3. THE RISC-V BASE INSTRUCTION SET ARCHITECTURE 17

31 0 31 0

x0/zero x16

x1 x17

x2 x18

x3 x19

x4 x20

x5 x21

x6 x22

x7 x23

x8 x24

x9 x25

x10 x26

x11 x27

x12 x28

x13 x29

x14 x30

x15 x31

32 32

31 0

pc

32

Figure 3.1: RV32I user-visible architectural state.

instruction, reducing the number of mandatory user-level hardware instructions to 40. As
with many RISC instruction sets, the remaining instructions fall into three categories: com-
putation, control flow, and memory access. RISC-V is a load-store architecture, in which
arithmetic instructions operate only on the registers, and only loads and stores transfer data
to and from memory.

There are 31 general-purpose integer registers in RV32I, named x1–x31, each 32 bits wide.
(The register specifier x0 names the constant zero; it can also be used as a destination register
to discard an instruction’s result.) The only additional register is the program counter, pc,
which holds the byte address of the current instruction. As Figure 3.1 shows, the entirety of
the user-visible architectural state totals 1024 bits.

Instructions in RV32I are 32 bits long and must be stored naturally aligned in memory,
in little-endian byte order1. Six instruction formats, which Figure 3.2 depicts, comprise the
47 instructions: four major formats, R, I, S, and U; and two variants, SB and UJ, which
are identical to S and U except for the immediate operand encoding. Instructions in these

1The choice of memory system endianness is somewhat arbitrary. Some computations, such as IP packet
processing and C string manipulation, favor big-endianness. We chose little-endianness because it is currently
dominant in general-purpose computing: x86 is little-endian, and, while ARM is bi-endian, little-endian
software is more common. While portable software should never rely on memory system endianness, much
software, in practice, does. Adopting the most popular choice reduces the effort to port low-level software
to RISC-V.

RV32I Programmer-visible register set (Waterman 2016)
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Instructions

all basic instructions are 32 bit wide
must be stored at word-aligned memory locations
... but 16 bit compressed extensions relax alignment to 16
bits
Instructions for the RV64 and RV128 variants are also 32
bits long
RISC-V is a “three address” architecture. E.g.:

add x4,x5,x7 # x4 = x5 + x7
16-bit instructions are optionally supported to compress
code (the “C” extension), but they are synonyms of the
standard 32-bit instructions

(Porter 2018)
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Instruction formats
Copyright © 2010–2014, The Regents of the University of California. All rights reserved. 11

2.2 Base Instruction Formats

In the base ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 2.2. All are
a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An instruction
address misaligned exception is generated if the pc is not four-byte aligned on an instruction fetch.

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[31:12] rd opcode U-type

Figure 2.2: RISC-V base instruction formats.

The RISC-V ISA keeps the source (rs1 and rs2) and destination (rd) registers at the same position
in all formats to simplify decoding. Immediates are packed towards the leftmost available bits in
the instruction and have been allocated to reduce hardware complexity. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed sign-extension circuitry.

Decoding register specifiers is usually on the critical paths in implementations, and so the in-
struction format was chosen to keep all register specifiers at the same position in all formats at
the expense of having to move immediate bits across formats (a property shared with RISC-IV
aka. SPUR [12]).

In practice, most immediates are either small or require all XLEN bits. We chose an asym-
metric immediate split (12 bits in regular instructions plus a special load upper immediate in-
struction with 20 bits) to increase the opcode space available for regular instructions. In addition,
the ISA only has sign-extended immediates. We did not observe a benefit to using zero-extension
for some immediates and wanted to keep the ISA as simple as possible.

2.3 Immediate Encoding Variants

There are a further two variants of the instruction formats (SB/UJ) based on the handling of
immediates, as shown in Figure 2.3.

In Figure 2.3 each immediate subfield is labeled with the bit position (imm[x ]) in the immediate
value being produced, rather than the bit position within the instruction’s immediate field as is
usually done. Figure 2.4 shows the immediates produced by each of the base instruction formats,
and is labeled to show which instruction bit (inst[y ]) produces each bit of the immediate value.

The only difference between the S and SB formats is that the 12-bit immediate field is used to encode
branch offsets in multiples of 2 in the SB format. Instead of shifting all bits in the instruction-
encoded immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1])
and sign bit stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order
bit in SB format.

(Waterman et al. 2014)
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Instruction types

R-type instructions:
add x3,x5,x6 # x3 = x5 + x6

I-type instructions:
addi x4,x6,123 # x4 = x6+123
lw x4,8(x6) # x4 = Mem[8+x6]

S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

U-type instructions:
lui x4,0x12AB7 # x4 = value<<12

auipc x4,0x12AB7 # x4 = (value<<12) + pc
J-type instructions (a variant of U-type):

jal # call: pc = offset + pc; x4 = ret add
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Instruction types

R-type instructions:
add x3,x5,x6 # x3 = x5 + x6

I-type instructions:
addi x4,x6,123 # x4 = x6+123
lw x4,8(x6) # x4 = Mem[8+x6]

S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

U-type instructions:
lui x4,0x12AB7 # x4 = value<<12

auipc x4,0x12AB7 # x4 = (value<<12) + pc
J-type instructions (a variant of U-type):

jal # call: pc = offset + pc; x4 = ret add
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Instruction types

R-type instructions:
add x3,x5,x6 # x3 = x5 + x6

I-type instructions:
addi x4,x6,123 # x4 = x6+123
lw x4,8(x6) # x4 = Mem[8+x6]

S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

U-type instructions:
lui x4,0x12AB7 # x4 = value<<12

auipc x4,0x12AB7 # x4 = (value<<12) + pc
J-type instructions (a variant of U-type):

jal # call: pc = offset + pc; x4 = ret add
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Instruction types

R-type instructions:
add x3,x5,x6 # x3 = x5 + x6

I-type instructions:
addi x4,x6,123 # x4 = x6+123
lw x4,8(x6) # x4 = Mem[8+x6]

S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

U-type instructions:
lui x4,0x12AB7 # x4 = value<<12

auipc x4,0x12AB7 # x4 = (value<<12) + pc
J-type instructions (a variant of U-type):

jal # call: pc = offset + pc; x4 = ret add

Saulius Gražulis RISC architectures Vilnius, 2020 13 / 24



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Instruction types

R-type instructions:
add x3,x5,x6 # x3 = x5 + x6

I-type instructions:
addi x4,x6,123 # x4 = x6+123
lw x4,8(x6) # x4 = Mem[8+x6]

S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

U-type instructions:
lui x4,0x12AB7 # x4 = value<<12

auipc x4,0x12AB7 # x4 = (value<<12) + pc

J-type instructions (a variant of U-type):
jal # call: pc = offset + pc; x4 = ret add
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Instruction types

R-type instructions:
add x3,x5,x6 # x3 = x5 + x6

I-type instructions:
addi x4,x6,123 # x4 = x6+123
lw x4,8(x6) # x4 = Mem[8+x6]

S-type instructions:
sw x4,8(x6) # Mem[8+r6] = x4 (word)

B-type instructions (a variant of S-type):
blt x4,x6,loop # if x4<x6, goto offset + pc

U-type instructions:
lui x4,0x12AB7 # x4 = value<<12

auipc x4,0x12AB7 # x4 = (value<<12) + pc
J-type instructions (a variant of U-type):

jal # call: pc = offset + pc; x4 = ret add

Saulius Gražulis RISC architectures Vilnius, 2020 13 / 24



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Addressing modes

Just 2 addressing modes!

immediate (operand in the instruction)
register indirect + offset

Immediate values:

addi x5,x0,21

lui x6,x0,0x1234
addi x6,x0,0x5678 # x6 = 0x12345678
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Memory access instructions

CHAPTER 3. THE RISC-V BASE INSTRUCTION SET ARCHITECTURE 22

Instruction Format Meaning

lb rd, imm[11:0](rs1) I Load byte, signed
lbu rd, imm[11:0](rs1) I Load byte, unsigned
lh rd, imm[11:0](rs1) I Load half-word, signed
lhu rd, imm[11:0](rs1) I Load half-word, unsigned
lw rd, imm[11:0](rs1) I Load word
sb rs2, imm[11:0](rs1) S Store byte
sh rs2, imm[11:0](rs1) S Store half-word
sw rs2, imm[11:0](rs1) S Store word
fence pred, succ I Memory ordering fence
fence.i I Instruction memory ordering fence

Table 3.3: Listing of RV32I memory access instructions.

The load instructions all use the I-type instruction format. The LW instruction copies a
32-bit word from memory into integer register rd. LH and LB load 16-bit and 8-bit quantities,
respectively, placing the result in the least-significant bits of rd, and filling the upper bits of
rd with copies of the sign bit. LHU and LBU are similar, but instead they zero-fill the upper
bits.

The stores are all S-type instructions. The SW instruction copies the 32-bit value in
integer register rs2 to memory. SH and SB copy the low 16-bits and 8-bits in rs2 to half-
word and byte-sized memory locations, respectively.

Memory Access Ordering

A RISC-V thread of execution perceives all of its own loads and stores to have occurred
in program order, but in a multithreaded environment, there is no intrinsic guarantee of
the order in which one thread perceives another thread’s memory accesses. This design
is referred to as a relaxed memory model. Weak memory models like RISC-V’s are less
intuitive than sequential consistency (SC), in which “the result of any execution is the same
as if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified by its
program” [59]. But SC effectively disallows several important memory system optimizations,
like non-blocking loads and write buffering with bypassing [1].

Leveraging the observation that few memory ordering violations can actually become vis-
ible to other threads, out-of-order microarchitectures can speculate that reordering memory
accesses is safe, and discard the incorrect execution if another thread might have been able
to detect the reordering [106]. In effect, they can reuse their existing speculation mechanisms
to give the appearance of SC but performance closer to that of a relaxed memory model [31].
Alas, this technique does not apply to simple, in-order microarchitectures, because they do
not already have this expensive speculative execution hardware. Choosing SC as our memory

(Waterman 2016)
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Register x0

Register x0 always contains 0 (and writes to it are ignored).
Interregister MOV instruction not necessary!

add x6,x7,x0

is used instead of

mov x6,x7
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Register x1

Register x1 is used to store return address during subroutine
calls, by convention (any other register could do!).

The return is then just jr x1 (Jump using Register)

For recursive calls x1 needs to be saved!
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MUL implementation
Lower part bits of multiplication are the same for signed and
unsigned multiplication ⇒ only one MUL instruction is needed:

mul x4,x9,x13 # x4 = x9*x13

However the higher portion can be different for signed and
unsigned operands, thus 3 instructions produce high bits:

MULH – signed operands
MULHU – unsigned operands
MULHSU – one signed operand and one unsigned operand

Operations should be performed in this order and can then be
(optionally) fused by hardware:

mulh x4,x9,x13 # compute upper half
mul x5,x9,x13 # compute lower half
# The product is now in the register pair x4:x5
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unsigned operands, thus 3 instructions produce high bits:
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JMP implementation

Instruction for JMP is always jump-and-link: jal or jalr.

But, if you do not need the return address, use x0 as a link
register :)

jal x0, loop
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Stack. x2

A function that requires stack storage will grow the stack
(always by a multiple of 16) by subtracting from the stack
top pointer sp.
Variables within the stack frame can be addressed using
positive offsets from register x2.
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GP: x3

The RISC-V calling convention is to place the global
variables together and initialise a register to point to this
area.
By convention, register x3 is used for this.
The individual variables can be conveniently addressed by
using a small offset from the global pointer.
The global pointer is typically initialised early in the
program and never changed. So, in some sense, it is
“callee-saved”
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Other registers

Register x4 – The Thread Base Pointer (“tp”)
Register x8,x9,x18-x27 – Saved Registers (“s0-s11”) (Callee
saved)
Register x5-x7,x28-x31 – Temporary Registers (“t0-t6”)
(Caller saved)
Register x10-x17 - Argument Registers (“a0-a7”) 2

2Floating point arguments are passed in the floating point, fn registers if
they exist.
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Example: multiple precision add

li t0,0x12345678
li t1,0xFFEDCBA9
li t2,0x1F
li t3,0x44
add t5,t1,t0
sltu t4,t5,t0 # Determine the carry bit.
add t6,t2,t3
add t6,t6,t4 # Add the carry bit
# t6 now contains the double-machine -word (64 bit) sum.
# Exit to the caller:
li a0,0
li a7,93
ecall
ebreak
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Example: multiple precision add

li t0,0x12345678
li t1,0xFFEDCBA9
li t2,0x1F
li t3,0x44
add t5,t1,t0
add t6,t2,t3
bgeu t5,t0,nocarry # Determine the carry bit.
addi t6,t6,1 # Add the carry bit
nocarry:
# t6 now contains the double-machine -word (64 bit) sum.
# Exit to the caller:
li a0,0
li a7,93
ecall
ebreak
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