
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Deep learning has demonstrated tremendous success

in variety of application domains in the past few years. This new

field of machine learning has been growing rapidly and applied

in most of the application domains with some new modalities of

applications, which helps to open new opportunity. There are

different methods have been proposed on different category of

learning approaches, which includes supervised, semi-supervised

and un-supervised learning. The experimental results show state-

of-the-art performance of deep learning over traditional machine

learning approaches in the field of Image Processing, Computer

Vision, Speech Recognition, Machine Translation, Art, Medical

imaging, Medical information processing, Robotics and control,

Bio-informatics, Natural Language Processing (NLP), Cyber

security, and many more.

This report presents a brief survey on development of DL

approaches, including Deep Neural Network (DNN),

Convolutional Neural Network (CNN), Recurrent Neural Network

(RNN) including Long Short Term Memory (LSTM) and Gated

Recurrent Units (GRU), Auto-Encoder (AE), Deep Belief Network

(DBN), Generative Adversarial Network (GAN), and Deep

Reinforcement Learning (DRL). In addition, we have included

recent development of proposed advanced variant DL techniques

based on the mentioned DL approaches. It is noted that we have

considered most of the papers published after 2012 from when the

history of deep learning began. Furthermore, DL approaches have

explored and evaluated in different application domains are also

included in this survey. We have also comprised recently

developed frameworks, SDKs, and benchmark datasets that are

used for implementing and evaluating deep learning approaches.

There are some surveys have published on Deep Learning in

Neural Networks [1, 38] and a survey on RL [234]. However, those

papers have not discussed the individual advanced techniques for

training large scale deep learning models and the recently

developed method of generative models [1].

Index Terms—Deep Learning, Convolutional Neural Network

(CNN), Recurrent Neural Network (RNN), Auto-Encoder (AE),

Restricted Boltzmann Machine (RBM), Deep Belief Network

(DBN), Generative Adversarial Network (GAN), Deep

Reinforcement Learning (DRL), Transfer Learning.

Md Zahangir Alom1*, Tarek M. Taha1, Chris Yakopcic1, Stefan Westberg1 , and

Vijayan K. Asari1 are with the University of Dayton, 300 College Park, Dayton,
OH 45469 USA (e-mail: Emails: {1*alomm1, ttaha1, cyakopcic1, westbergs1,

vasari1}@udayton.edu).

I. INTRODUCTION

ince the 1950s, a small subset of Artificial Intelligence,

often called Machine Learning (ML), started

revolutionizing several fields in the last few decades.

Neural Networks (NN) is a subfield of ML, and from where

Deep Learning (DL) spawned, has introduced and created ever

larger disruptions, showing outstanding success in almost every

application domain. Fig. 1 shows, the taxonomy of AI. DL

(deep architecture of learning or hierarchical learning

approaches) is a class of machine learning technique developed

largely from 2006. Learning is a procedure consisting of

estimating the model parameters so that the learned model

(algorithm) can perform a specific task. For example, in

Artificial Neural Networks (ANN), the parameters are the

weight matrices (𝑤 𝑖,𝑗 ′𝑠). DL on the other hand consists of

several layers in between the input and output layer which

allows many stages of non-linear information processing units

with hierarchical architectures that are exploited for feature

learning and pattern classification [1, 2]. Learning method

based on representations of data can also be defined as

representation learning [3]. Recent literature defines that DL

based representation learning involves a hierarchy of features

or concepts, where the high-level concepts can be defined from

the low-level ones and low-level concepts can be defined from

high-level ones. In some article, DL has also described as a

universal learning approach that is able to solve almost all kinds

of problems in different application domains (DL is not task

specific) [4].

A. Types of DL approaches:

 Like machine learning, deep learning approaches can be

categorized into the following categories: supervised, semi-

supervised or partially supervised, and unsupervised. In

addition, there is another category of learning approaches called

Reinforcement Learning (RL) or Deep RL (DRL) which are

Mahmudul Hasan2, is with Comcast Labs, Washington, DC, USA. He is

currently working as research scientist on Deep Learning. for computer vision
(e-mail: mahmud.ucr@gmail.com).

Brian C Van Esesn3and Abdul A S. Awwal3 are with the Lawrence

Livermore National Laboratory (LLNL), Livermore, CA 94550 USA. (e-mail:
{vanessen1, awwal1}@llnl.gov,).

The History Began from AlexNet: A

Comprehensive Survey on Deep Learning

Approaches

Md Zahangir Alom1, Tarek M. Taha1, Christopher Yakopcic1, Stefan Westberg1, Mahmudul Hasan2,

Brian C Van Esesn3, Abdul A S. Awwal3, and Vijayan K. Asari1

S

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

often discussed under the scope of semi supervised or

sometimes under un-supervised learning approaches.

Fig. 1. AI: Artificial Intelligence, ML, NN, DL, and Spiking Neural Networks

(SNN) according to [294].

1) Supervised Learning

A learning technique with labeled data. In case of supervised

DL approaches, the environment has a set of inputs and their

corresponding outputs(𝑥𝑡 , 𝑦𝑡)~𝜌. For example, if for input xt,

the intelligent agent predicts �̂�𝑡 = 𝑓(𝑥𝑡), the agent will receive

a loss value 𝑙(𝑦𝑡 , �̂�𝑡). The agent will then iteratively modify the

network parameters for better approximation of the desired

outputs. After successful training, the agent will be able to get

the correct answers to questions from the environment. There

are different supervised learning approaches for deep leaning

including Deep Neural Networks (DNN), Convolutional Neural

Networks (CNN), Recurrent Neural Networks (RNN) including

Long Short Term Memory (LSTM), and Gated Recurrent Units

(GRU). These networks are described in sections 2, 3, 4, and 5

respectively.

2) Semi-supervised Learning

A learning with partially labeled datasets (often also called

reinforcement learning). Section 8 of this study surveys DRL

approaches. In some cases, DRL and Generative Adversarial

Networks (GAN) are used as semi-supervised learning

techniques. Additionally, RNN including LSTM and GRU are

used for semi-supervised learning as well. GAN is discussed in

Section 7.

3) Un-supervised learning

A learning approach without labels. In this case, the agent learns

the internal representation or important features to discover

unknown relationships or structure within the input data. Very

often clustering, dimensionality reduction, and generative

techniques are considered as un-supervised learning

approaches. There are several members of the deep learning

family which are good at clustering and non-linear

dimensionality reduction, including Auto Encoders (AE),

Restricted Boltzmann Machines (RBM), and the recently

developed GAN. In addition, RNNs, such as LSTM and RL, are

also used for un-supervised learning in many application

domains [243]. Section 6 and 7 discuss RNNs and LSTMs in

detail.

4) Deep Reinforcement learning (DRL)

This is a learning technique for use in unknown environments.

DRL began in 2013 from Google Deep Mind [5, 6]. From then

on, several advanced methods have been proposed based on RL.

Here is an example of RL: if environment samples inputs: 𝑥𝑡~𝜌

, agent predict: �̂�𝑡 = 𝑓(𝑥𝑡) , agent receive cost: 𝑐𝑡~𝑃(𝑐𝑡|𝑥𝑡 , �̂�𝑡)

where P is an unknown probability distribution, the

environment asks agent a question, and give her a noisy score

as her answer. Sometime the approach is called semi-supervised

learning as well. There are many semi-supervised and un-

supervised techniques that have been implemented based on

this concept (in Section 8). In RL, we do not have a straight

forward loss function, thus making learning harder compared to

traditional supervised approaches. The fundamental differences

between RL and supervised learning are: first, you do not have

full access to the function you are trying to optimize; you must

query it through interaction, and second, you are interacting

with a state based environment: input 𝑥𝑡 depends on previous

actions.

Depending upon the problem scope or space, you can decide

which type of RL needs to be applied for solving a task. If the

problem has a lot of parameter to be optimized, DRL is the best

way to go. If the problem has fewer parameters for

optimization, a derivation free RL approach is good. Example

of this are annealing, cross entropy methods, and SPSA. We

conclude this section with a quote from Yann LeCun:

 “If intelligence was a cake, unsupervised learning would be

the cake, supervised learning would be the icing, and

reinforcement learning would be the carry.” – Yann LeCun

Fig. 2. Category of Deep Leaning approaches

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

B. Feature Learning

A key difference between traditional ML and DL is in how

features are extracted. Traditional ML approaches use

handmade features by applying several feature extraction

algorithms including Scale Invariant Feature Transform (SIFT),

Speeded Up Robust Features (SURF), GIST, RANSAC,

Histogram Oriented Gradient (HOG), Local Binary Pattern

(LBP), Empirical mode decomposition (EMD) for speech

analysis, and many more. Finally, the leaning algorithms

including support vector machine (SVM), Random Forest (RF),

Principle Component Analysis (PCA), Kernel PCA (KPCA),

Linear Decrement Analysis (LDA), Fisher Decrement Analysis

(FDA), and many more are applied for classification on the

extracted features. Additionally, other boosting approaches are

often used where several learning algorithms are applied on the

features of a single task or dataset and a decision is made

according to the multiple outcomes from the different

algorithms.
TABLE I

DIFFERENT FEATURE LEARNING APPROACHES

Approaches Learning steps

Rule based Input Hand-
design

features

Output

Traditional
Machine

Learning

Input Hand-
design

features

Mapping
from

features

Output

Representation

Learning

Input Features Mapping

from
features

Output

Deep Learning Input Simple

features

Complex

features

Mapping

from
features

Output

On the other hand, in case of DL, the features are learned

automatically and are represented hierarchically in multiple

levels. This is the strong point of deep learning against

traditional machine learning approaches. The following table

shows the different feature based learning approaches with

different learning steps.

Fig. 3. Where to apply DL approaches

C. When and where to apply DL

DL is employed in several situations where machine

intelligence would be useful (see Fig. 3):

1. Absence of a human expert (navigation on Mars)

2. Human are unable to explain their expertise (speech

recognition, vision and language understanding)

3. The solution to the problem changes over time (tracking,

weather prediction, preference, stock, price prediction)

4. Solutions need to be adapted to particular cases

(biometrics, personalization),

5. The problem size is too vast for our limited reasoning

capabilities (calculation webpage ranks, matching ads to

Facebook, sentiment analysis).

At present deep learning is being applied in almost all areas. As

a result, this approach is often called a universal learning

approach. Some example applications are shown in Fig. 4.

 Object localization Object detection

 Image or Video Captioning Media and entertainment

 Image or video Segmentation Autonomous Car

 Machine translation Speech recognition

Security and Defense Medicine and biology

 Brian Cancer Detection Skin cancer recognition

Fig. 4. Example images where DL is applied successfully and achieved state-

of-the-art performance.

D. State-of-the-art performance of DL

There are some outstanding successes in the fields of computer

vision and speech recognition as discussed below:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

1) Image classification on ImageNet dataset

One of the large-scale problems is named Large Scale Visual

Recognition Challenge (LSVRC). DL CNN based techniques

show state-of-the-art accuracy on ImageNet task [11].

Russakovsky et al. recently published a paper on the ImageNet

dataset and the state-of-the-art accuracies achieved during last

few years [285]. The following graph shows the success story

of deep learning technique overtimes on this challenge from

2012. ResNet-152 shows only 3.57% error, which is better than

human errors for this task at 5%.

2) Automatic Speech recognition

The initial success in the field of speech recognition on the

popular TIMIT dataset (common data set are generally used for

evaluation) was with small scale recognition tasks. The TIMIT

acoustic-Phonetic continuous speech Corpus contains 630

speakers from eight major dialects of American English, where

each speaker reads 10 sentences. The graph below summarizes

the error rates including these early results and is measured as

percent phone error rate (PER) over the last 20 years. The bar

graph clearly shows that the recently developed deep learning

approaches (top of the graph) perform better compared to any

other previous machine learning approaches on the TIMIT

dataset.

E. Why deep Learning

1) Universal learning approach
This approach is sometimes called universal learning because it

can be applied to almost in any application domain.

2) Robust

 Deep learning approaches do not require the design of features

ahead of time. Features are automatically learned that are

optimal for the task at hand. As a result, the robustness to

natural variations in the data is automatically learned.

3) Generalization
The same deep learning approach can be used in different

applications or with different data types. This approach is often

called transfer learning. In addition, this approach is helpful

where the problem does not have sufficient available data.

There are several papers have been published based on this

concept (discussed in more detail in Section 4).
4) Scalability

The deep learning approach is highly scalable. In a 2015 paper,

Microsoft described a network known as ResNet [11]. This

network contains 1202 layers and is often implement on a

supercomputing scale. There is a big initiative at Lawrence

Livermore National Laboratory (LLNL) developing

frameworks for networks like this, which can implement

thousands of nodes [24].

F. Challenges of DL

There are several challenges for deep learning:

 Big data analytics using Deep Learning

 Scalability of DL approaches

 Ability of generate data which is important where data is

not available for learning the system (especially for

computer vision task such as inverse graphics).

 Energy efficient techniques for special purpose devices

including mobile intelligence, FPGAs, and so on.

 Multi-task and transfer learning (generalization) or

multi-module learning. This means learning from

different domains or with different models together.

 Dealing with causality in learning.

Most of the mentioned challenges already considered seriously

by the deep learning community. Several papers have been

published as solutions of those challenges. For the big data

analytics challenge, there is a good survey that has been

conducted in 2014. In this paper, the authors explain details

about how DL can deal with different criteria including volume,

velocity, variety and veracity of the big data problem and have

shown different advantages of DL approaches of dealing with

big data problems [25, 26, and 27]. Deep learning is a data

driven technique. Fig. 7 clearly demonstrates that the

Fig. 5. Accuracy for ImageNet challenge with different DL models.

16.4

11.2

7.4 6.7

3.57
5

0

2

4

6

8

10

12

14

16

18

2012 2013 2014 2014 2015

AlexNet[7] Clarifia[8] VGG-16 [9] GoogLeNet-
19 [10]

ResNet-
152[11]

Human

Er
ro

s
(%

)

Model & Year

The experimental results on ImageNet-2012

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

performance of traditional ML approaches show better

performance for lesser amounts of input data. As the amount of

data increases beyond a certain amount, the performance of

traditional machine learning approaches become steady. In

contrast, the performance of deep learning approaches increase

with respect to the increment in the amount of data.

Fig. 6. Phone error rate (PER) for TIMIT dataset

Secondly, most of the cases for solving large scale problem, the

solution being implemented on High Performance Computing

(HPC) system (super-computing, cluster, sometime considered

cloud computing) which offers immense potential for data-

intensive business computing. But as data explodes in velocity,

variety, veracity and volume, it is getting increasingly difficult

to scale compute performance using enterprise class servers and

storage in step with the increase. Most of the papers considered

all the demands and suggested efficient HPC with

heterogamous computing system. One of the example:

Lawrence Livermore National Laboratory (LLNL) has

developed a framework which is called Livermore Big

Artificial Neural Networks (LBANN) for large-scale

implementation (in super-computing scale) for DL which

clearly answer the issue of scalability of DL [24]

Thirdly, generative model which is another challenge for deep

learning, one of the example GAN which is an outstanding

approach for data generation for any task which can generate

data with same distribution [28]. Fourthly, multi-task and

transfer learning which we have discussed in section 7.

Fourthly, there are a lot of researches have been conducted on

energy efficient deep learning approaches with respective to

network architectures and hardwires. Section 10 discusses on

this issue

Can we make any uniform model that can solve multiple tasks

in different application domain? As per as the multi-model

system is concern, there is one paper published recently from

Google titled “One Model To Learn Them All” [29]. This

approach can learn from different application domains

including ImageNet, multiple translation tasks, Image

captioning (MS-COCO dataset), speech recognition corpus and

English parsing task. We will be discussing most of the

challenges and respective solution through this survey. There

are some other multi-task techniques are proposed in the last

few years [30, 31, and 32]

Fig. 7. The performance of deep learning with respect to the number of data.

Finally, a learning system with causality which is a graphical

model that define how one may infer a causal model from data.

Recently a DL based approach has been proposed for solving

this type of problem [33]. However, there are other many

challenging issues have been solved in the last few years which

were not possible to solve efficiently before this revolution. For

example: image or video captioning [34], style transferring

from one domain to anther domain using GAN [35], Text to

image synthesis [36], and many more [37].

There are some surveys have been conducted recently in this

field[294,295]. One of the good survey on deep learning and

its revolution but this paper did not address the recently

developed generative model called GAN [28]. In addition, it

discusses title bit on RL but did not cover recent trends of DRL

approaches [1, 39]. Most of the cases, the survey has been

conducted on different DL approaches separately. There is good

survey which is based on the Reinforcement learning

approaches [40, 41]. Another survey on transfer learning [42].

One of the survey have been conducted on neural network

hardware [43]. However, the main objective of this technical

report is to provide an overall idea on deep learning and its

related field including deep supervised (e.g. DNN, CNN, and

RNN), unsupervised (e.g. AE, RBM, GAN) (sometimes GAN

also used for semi-supervised learning tasks) and DRL. In some

cases, DRL is considered as semi-supervised or un-supervised

approaches. In addition, we have considered the recently

development trend of this field and applications which are

developed based on this technique. Furthermore, we have

included the framework and benchmark datasets which are

often used for evaluating deep learning techniques. Moreover,

the name of the conferences and journals are also included

which are considered by this community for publishing their

research articles.

The rest of the paper has been organized in the following ways:

the detail survey of DNN is discussed in Section II, Section III

is discussed on CNN. Section IV describes on different

advanced techniques for efficient training of DL approaches.

Section V. discusses on RNN. AE and RBM are discussed in

Section VI. GAN with application is discussed in Section VII.

RL is presented in the Section VIII. Section IX explains on

transfer learning. Section X. presents on energy efficient

0 10 20 30 40

First-pass SCRF [13]
Boundary-factored SCRF[14]

Deep Segmental NN[15]
Discriminative segmetal…

End-to-end DL [17]
DSC with 2nd pass[16]

CDNN w. Hater.s Pooling[18]
CTC[19]

DCNN [20]
Ensemble DNN/CNN/RNN[21]

RNN transducer[19]
Attention-based RNN[22]

Segmental RNN[23]

Phone error rate (PER) in percentage(%)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

approaches and hardwires for DL. The section XI discusses on

deep learning frameworks and standard development kits

(SDK). The benchmarks for different application domains with

web links are given in Section XII. The conclusion is made in

the Section XIII.

II. DEEP NEURAL NETWORK (DNN)

A. The History of DNN

Below is a brief history of neural networks highlighting key

events:

 1943: McCulloch & Pitts show that neurons can be

combined to construct a Turing machine (using

ANDs, ORs, & NOTs) [44].

 1958: Rosenblatt shows that perceptron’s will

converge if what they are trying to learn can be

represented [45].

 1969: Minsky & Papert show the limitations of

perceptron’s, killing research in neural networks for a

decade [46].

 1985: The backpropagation algorithm by Geoff

Hinton et al [47] revitalizes the field.

 1988: Neocognitron: a hierarchical neural network

capable of visual pattern recognition [48].

 1998: CNN with Backpropagation for document

analysis by Yan LeCun [49].

 2006: The Hinton lab solves the training problem for

DNNs [50,51].

 2012 : AlexNet by Alex Krizhevesky in 2012 [7].

Fig. 8. History of DL

Computational neurobiology has conducted significant

research on constructing computational models of artificial

neurons. Artificial neurons, which try to mimic the behavior of

the human brain, are the fundamental component for building

ANNs. The basic computational element (neuron) is called a

node (or unit) which receives inputs from external sources, has

some internal parameters (including weights and biases that are

learned during training), and produce outputs. This unit is

called a perceptron. The basic block diagram of a perceptron for

NNs is show in the following diagram.

Fig. 9. Basic model of a neuron

Fig. 9 shows the basic nonlinear model of a neuron, where

𝑥1, 𝑥2, 𝑥3, ⋯ 𝑥𝑚 are inputs signal; 𝑤𝑘1, 𝑤𝑘2, 𝑤𝑘3, ⋯ 𝑤𝑘𝑚 are

synaptic weights; 𝑣𝑘 is the linear combination of input signals;

𝜑(∙) is the activation function (such as sigmoid), and 𝑦𝑘 is the

output. The bias 𝑏𝑘 is added with a linear combiner outputs

𝑣𝑘, which has the effect of applying an affine transformation,

producing the outputs 𝑦𝑘. The neuron functionality can be

represented mathematically as follows:

 𝑣𝑘 = ∑ 𝑤𝑘𝑗
𝑚
𝑗=1 𝑥𝑗 (1)

 𝑦𝑘 = 𝜑(𝑣𝑘 + 𝑏𝑘) (2)

ANNs or general NNs consist of Multilayer Perceptron’s

(MLP) which contain one or more hidden layers with multiple

hidden units (neurons) in them. The NN model with MLP is

shown in Fig. 10.

Fig. 10. Neural network model with multiple layers perceptron

The multilayer perceptron can be expressed mathematically

(which is a composite function) as follows:

 𝑦 = 𝑓(𝑥) = 𝜑(𝑤𝐿 ⋯ 𝜑(𝑤2𝜑(𝑤1𝑥 + 𝑏1) + 𝑏2) ⋯ + 𝑏𝐿) (3)

B. Gradient descent

The gradient descent approach is a first order optimization

algorithm which is used for finding the local minima of an

objective function. This has been used for training ANNs in the

last couple of decades successfully. Algorithm I explains the

concept of gradient descent:

Algorithm I. Gradient descent

Inputs: loss function 휀, learning rate 휂, dataset 𝑋, 𝑦 and the

model ℱ(휃, 𝑥)

Outputs: Optimum 휃 which minimizes 휀

REPEAT until converge:

 �̃� = ℱ(휃, 𝑥)

 휃 = 휃 − 휂 ∙
1

𝑁
∑

𝜕𝜀(𝑦,�̃�)

𝜕𝜃

𝑁
𝑖=1

End

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

C. Stochastic Gradient Descent (SGD)

Since a long training time is the main drawback for the

traditional gradient descent approach, the SGD approach is used

for training Deep Neural Networks (DNN) [52]. Algorithm II

explains SGD in detail.

Algorithm II. Stochastic Gradient Descent (SGD)

Inputs: loss function 휀, learning rate 휂, dataset 𝑋, 𝑦 and the

model ℱ(휃, 𝑥)

Outputs: Optimum 휃 which minimizes 휀

REPEAT until converge:

 Shuffle 𝑋, 𝑦;

 For each batch of 𝑥𝑖 , 𝑦𝑖 in 𝑋, 𝑦 do

 �̃�𝑖 = ℱ(휃, 𝑥𝑖);

 휃 = 휃 − 휂 ∙
1

𝑁
∑

𝜕𝜀(𝑦𝑖,�̃�𝑖)

𝜕𝜃

𝑁
𝑖=1

End

D. Back-propagation

DNN are trained with the popular Back-Propagation (BP)

algorithm with SGD [53]. The pseudo code of basic Back-

propagation is given in Algorithm III. In case of MLP, we can

easily represent NN models using computation graphs which

are directive acyclic graphs. For that representation of DL, we

can use the chain-rule to efficiently calculate the gradient from

the top to the bottom layers with BP as shown in Algorithm III

for a single path network. For example:

𝑦 = 𝑓(𝑥) = 𝜑(𝑤𝐿 ⋯ 𝜑(𝑤2𝜑(𝑤1𝑥 + 𝑏1) + 𝑏2) ⋯ + 𝑏𝐿) (4)

 This is composite function for 𝐿 layers of a network. In case

of 𝐿 = 2 , then the function can be written as

 𝑦 = 𝑓(𝑥) = 𝑓(𝑔(𝑥)) (5)

According to the chain rule, the derivative of this function can

be written as

𝜕𝑦

𝜕𝑥
=

𝜕𝑓(𝑥)

𝜕𝑥
= 𝑓′(𝑔(𝑥)) . 𝑔′(𝑥) (6)

E. Momentum

Momentum is a method which helps to accelerate the training

process with the SGD approach. The main idea behind it is to

use the moving average of the gradient instead of using only the

current real value of the gradient. We can express this with the

following equation mathematically:

 𝑣𝑡 = γ 𝑣𝑡−1 − 휂 ∇ ℱ(휃𝑡−1) (7)

 휃𝑡 = 휃𝑡−1 + 𝑣𝑡 (8)

Here γ is the momentum and 휂 is the learning rate for the tth

round of training. Other popular approaches have been

introduced during last few years which are explained in section

4 under the scope of optimization approaches. The main

advantages of using momentum during training is to prevent the

network from getting stuck in local minimum. The values of

momentum are γ ∈ (0,1]. It is noted that a higher momentum

value overshoots its minimum, possibly making the network

unstable. In generally γ is set to 0.5 until the initial learning

stabilizes and is then increased to 0.9 or higher [54].

Algorithm III. Back-propagation

Input: A network with 𝑙 layers, the activation function 𝜎𝑙 ,

the outputs of hidden layer ℎ𝑙 = 𝜎𝑙(𝑊𝑙
𝑇ℎ𝑙−1 + 𝑏𝑙) and the

network output �̃� = ℎ𝑙

Compute the gradient: 𝛿 ←
𝜕𝜀(𝑦𝑖,�̃�𝑖)

𝜕𝑦

For 𝑖 ← 𝑙 to 0 do

 Calculate gradient for present layer:

𝜕𝜀(𝑦,�̃�)

𝜕𝑊𝑙
=

𝜕𝜀(𝑦,�̃�)

𝜕ℎ𝑙

𝜕ℎ𝑙

𝜕𝑊𝑙
= 𝛿

𝜕ℎ𝑙

𝜕𝑊𝑙

𝜕𝜀(𝑦,�̃�)

𝜕𝑏𝑙
=

𝜕𝜀(𝑦,�̃�)

𝜕ℎ𝑙

𝜕ℎ𝑙

𝜕𝑏𝑙
= 𝛿

𝜕ℎ𝑙

𝜕𝑏𝑙

 Apply gradient descent using
𝜕𝜀(𝑦,�̃�)

𝜕𝑊𝑙
 and

𝜕𝜀(𝑦,�̃�)

𝜕𝑏𝑙

 Back-propagate gradient to the lower layer

 𝛿 ←
𝜕𝜀(𝑦,�̃�)

𝜕ℎ𝑙

𝜕ℎ𝑙

𝜕ℎ𝑙−1
= 𝛿

𝜕ℎ𝑙

𝜕ℎ𝑙−1

End

F. Learning rate (𝜼)

The learning rate is an important component for training DNN

(as explained in Algorithm I and II). The learning rate is the step

size considered during training which makes the training

process faster. However, selecting the value of the learning rate

is sensitive. For example: if you choose a larger value for 휂,

the network may start diverging instead of converging. On the

other hand, if you choose a smaller value for 휂, it will take more

time for the network to converge. In addition, it may be easily

stuck in a local minima. The typical solution for this problem is

to reduce the learning rate during training [52].

There are three common approaches used for reducing the

learning rate during training: constant, factored, and

exponential decay. First, we can define a constant 휁 which is

applied to reduce the learning rate manually with a defined step

function. Second, the learning rate can be adjusted during

training with the following equation:

 휂𝑡 = 휂0 𝛽
𝑡

𝜖⁄ (9)

Where 휂𝑡 is the tth round learning rate, 휂0 is the initial learning

rate, and 𝛽 is the decay factor with a value between the range

of (0,1).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

The step function format for exponential decay is:

 휂𝑡 = 휂0 𝛽⌊𝑡
𝜖⁄ ⌋ (10)

The common practice is to use a learning rate decay of 𝛽 = 0.1

to reduce the learning rate by a factor of 10 at each stage.

G. Weight decay

Weight decay is used for training deep learning models as the

L2 regularization approach, which helps to prevent over fitting

the network and model generalization. L2 regularization for

ℱ(휃, 𝑥) can be define as:

 Ω = ‖휃‖2 (11)

 휀̂(ℱ(휃, 𝑥), 𝑦) = 휀(ℱ(휃, 𝑥), 𝑦) +
1

2
𝜆 Ω (12)

The gradient for the weight 휃 is:

𝜕

1

2
𝜆Ω

𝜕𝜃
= 𝜆 ∙ 휃 (13)

General practice is to use the value 𝜆 = 0.0004. A smaller 𝜆

will accelerate training.

Other necessary components for efficient training including

data preprocessing and augmentation, network initialization

approaches, batch normalization, activation functions,

regularization with dropout, and different optimization

approaches (as discussed in Section 4).

In the last few decades, many efficient approaches have been

proposed for better training of deep neural networks. Before

2006, attempts taken at training deep architectures failed: training

a deep supervised feed-forward neural network tended to yield

worse results (both in training and in test error) then shallow ones

(with 1 or 2 hidden layers). Hinton’s revolutionary work on

DBNs spearheaded a change in this in 2006 [50, 53].

Due to their composition, many layers of DNN are more

capable at representing highly varying nonlinear functions

compare to shallow learning approaches [56, 57, and 58].

Moreover, DNNs are more efficient for learning because of the

combination of feature extraction and classification layers. The

following sections discuss in detail about different DL

approaches with necessary components.

III. CONVOLUTIONAL NEURAL NETWORKS (CNN)

A. CNN overview

This network structure was first proposed by Fukushima in

1988 [48]. It was not widely used however due to limits of

computation hardware for training the network. In the 1990s,

LeCun et al. applied a gradient-based learning algorithm to

CNNs and obtained successful results for the handwritten digit

classification problem [49]. After that, researchers further

improved CNNs and reported state-of-the-art results in many

recognition tasks. CNNs have several advantages over DNNs,

including being more similar to the human visual processing

system, being highly optimized in structure for processing 2D

and 3D images, and being effective at learning and extracting

abstractions of 2D features. The max pooling layer of CNNs is

effective in absorbing shape variations. Moreover, composed of

sparse connections with tied weights, CNNs have significantly

fewer parameters than a fully connected network of similar size.

Most of all, CNNs are trained with the gradient-based learning

algorithm, and suffer less from the diminishing gradient

problem. Given that the gradient-based algorithm trains the

whole network to minimize an error criterion directly, CNNs

can produce highly optimized weights.

Fig. 11. The overall architecture of the CNN includes an input layer, multiple alternating convolution and max-pooling layers, one fully-connected

layer and one classification layer.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Fig. 11 shows the overall architecture of CNNs consist of two

main parts: feature extractors and a classifier. In the feature

extraction layers, each layer of the network receives the output

from its immediate previous layer as its input, and passes its

output as the input to the next layer. The CNN architecture

consists of a combination of three types of layers: convolution,

max-pooling, and classification. There are two types of layers

in the low and middle-level of the network: convolutional layers

and max-pooling layers. The even numbered layers are for

convolutions and the odd numbered layers are for max-pooling

operations. The output nodes of the convolution and max-

pooling layers are grouped into a 2D plane called feature

mapping. Each plane of a layer is usually derived of the

combination of one or more planes of previous layers. The

nodes of a plane are connected to a small region of each

connected planes of the previous layer. Each node of the

convolution layer extracts the features from the input images by

convolution operations on the input nodes.

Higher-level features are derived from features propagated

from lower level layers. As the features propagate to the highest

layer or level, the dimensions of features are reduced depending

on the size of kernel for the convolutional and max-pooling

operations respectively. However, the number of feature maps

usually increased for representing better features of the input

images for ensuring classification accuracy. The outputs of the

last layer of the CNN are used as inputs to a fully connected

network which is called classification layer. Feed-forward

neural networks have been used as the classification layer as

they have better performance [50, 58]. In the classification

layer, the desired number of features are selected as inputs with

respect to the dimension of the weight matrix of the final neural

network. However, the fully connected layers are expensive in

terms of network or learning parameters. Nowadays, there are

several new techniques including average pooling and global

average pooling that is used as an alternative of fully-connected

networks. The score of the respective class is calculated in the

top classification layer using a soft-max layer. Based on the

highest score, the classifier gives outputs for the corresponding

classes. Mathematical details on different layers of CNNs are

discussed in the following section.

1) Convolution Layer

In this layer, feature maps from previous layers are convolved

with learnable kernels. The outputs of the kernels go through

linear or non-linear activation functions such as (sigmoid,

hyperbolic tangent, Softmax, rectified linear, and identity

functions) to form the output feature maps. Each of the output

feature maps can be combined with more than one input feature

map. In general, we have that

 𝑥𝑗
𝑙 = 𝑓 (∑ 𝑥𝑖

𝑙−1
𝑖𝜖𝑀𝑗

∗ 𝑘𝑖𝑗
𝑙 + 𝑏𝑗

𝑙) (14)

where 𝑥𝑗
𝑙 is the outputs of the current layer, 𝑥𝑖

𝑙−1 is previous

layer outputs, 𝑘𝑖𝑗
𝑙 is the kernel for the present layer, and 𝑏𝑗

𝑙 are

biases for the current layer. 𝑀𝑗 represents a selection of input

maps. For each output map, an additive bias 𝑏 is given.

However, the input maps will be convolved with distinct

kernels to generate the corresponding output maps. The output

maps finally go through a linear or non-linear activation

function (such as sigmoid, hyperbolic tangent, Softmax,

rectified linear, or identity functions).

2) Sub-sampling Layer

The subsampling layer performs the down sampled operation

on the input maps. This is commonly known as the pooling

layer. In this layer, the number of input and output feature maps

does not change. For example, if there are 𝑁 input maps, then

there will be exactly 𝑁 output maps. Due to the down sampling

operation the size of each dimension of the output maps will be

reduced, depending on the size of the down sampling mask. For

example: if a 2×2 down sampling kernel is used, then each

output dimension will be the half of the corresponding input

dimension for all the images. This operation can be formulated

as

 xj
l = down(xj

l−1) (15)

where down(.) represents a sub-sampling function. Two types

of operations are mostly performed in this layer: average

pooling or max-pooling. In case of the average pooling

approach, this function usually sums up over N×N patches of

the feature maps from the previous layer and selects the average

value. On the other hand, in case of max-pooling, the highest

value is selected from the N×N patches of the feature maps.

Therefore, the output map dimensions are reduced by n times.

In some special cases, each output map is multiplied with a

scalar. Some alternative sub-sampling layers have been

proposed, such as fractional max-pooling layer and sub-

sampling with convolution. These are explained in Section 4.6.

3) Classification Layer

This is the fully connected layer which computes the score of

each class from the extracted features from a convolutional

layer in the preceding steps. The final layer feature maps are

represented as vectors with scalar values which are passed to

the fully connected layers. The fully connected feed-forward

neural layers are used as a soft-max classification layer. There

are no strict rules on the number of layers which are

incorporated in the network model. However, in most cases,

two to four layers have been observed in different architectures

including LeNet [49], AlexNet [7], and VGG Net [9]. As the

fully connected layers are expensive in terms of computation,

alternative approaches have been proposed during last few

years. These include the global average pooling layer and the

average pooling layer which help to reduce the number of

parameters in the network significantly.

In the backward propagation through the CNNs, the fully

connected layer updates following the general approach of fully

connected neural networks (FCNN). The filters of the

convolutional layers are updated by performing the full

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

convolutional operation on the feature maps between the

convolutional layer and its immediate previous layer. Fig. 12

shows the basic operations in the convolution and sub-sampling

of an input image.

Fig. 12. Example of convolution and pooling operation.

4) Network parameters and required memory for CNN

The number of computational parameters is an important

metric to measure the complexity of a deep learning model. The

size of the output feature maps can be formulated as follows:

 𝑀 =
(𝑁−𝐹)

𝑆
 + 1 (16)

Where 𝑁 refers to the dimensions of the input feature maps, 𝐹

refers to the dimensions of the filters or the receptive field, 𝑀

refers to the dimensions of output feature maps, and 𝑆 stands

for the stride length. Padding is typically applied during the

convolution operations to ensure the input and output feature

map have the same dimensions. The amount of padding

depends on the size of the kernel. Equation 17 is used for

determining the number of rows and columns for padding.

 𝑃 = (𝐹 − 1)/2 (17)

Here 𝑃 is the amount of padding and 𝐹 refers to the dimension

of the kernels. Several criterion are considered for comparing

the models. However, in most of the cases, the number of

network parameters and total amount of memory are

considered. The number of parameters (𝑃𝑎𝑟𝑚𝑙) of 𝑙𝑡ℎ layer is

calculated based on the following equation:

𝑃𝑎𝑟𝑚𝑙 = (𝐹 × 𝐹 × 𝐹𝑀𝑙−1) × 𝐹𝑀𝑙 (18)

If bias is added with the weights, then the above equation can

be written as follows:

𝑃𝑎𝑟𝑚𝑙 = (𝐹 × 𝐹 × (𝐹𝑀𝑙−1 + 1)) × 𝐹𝑀𝑙 (19)

Here the total number of parameters of 𝑙𝑡ℎ layer can be

represented with 𝑃𝑙 , 𝐹𝑀𝑙 is for the total number of output

feature maps, and 𝐹𝑀𝑙−1 is the total number of input feature

maps or channels. For example, let’s assume the 𝑙𝑡ℎ layer has

𝐹𝑀𝑙−1 = 32 input features maps, 𝐹𝑀𝑙 = 64 output feature

maps, and the filter size is 𝐹 = 5. In this case, the total number

of parameters with bias for this layer is

𝑃𝑎𝑟𝑚𝑙 = (5 × 5 × 33) × 64 = 528,000

Thus the amount of memory (𝑀𝑒𝑚𝑙) needed for the operations

of the 𝑙𝑡ℎ layer can be expressed as

𝑀𝑒𝑚𝑙 = (𝑁𝑙 × 𝑁𝑙 × 𝐹𝑀𝑙) (20)

B. Popular CNN architectures

We will now examine several popular state-of-the-art CNN

architectures. In general, most deep convolutional neural

networks are made of a key set of basic layers, including the

convolution layer, the sub-sampling layer, dense layers, and the

soft-max layer. The architectures typically consist of stacks of

several convolutional layers and max-pooling layers followed

by a fully connected and SoftMax layers at the end. Some

examples of such models are LeNet [49], AlexNet [7], VGG

Net [9], NiN [60] and all convolutional (All Conv) [61]. Other

alternative and more efficient advanced architectures have been

proposed including GoogLeNet with Inception Networks [10,

64], Residual Networks [11], DenseNet [62], and FractalNet

[63]. The basic building components (convolution and pooling)

are almost the same across these architectures. However, some

topological differences are observed in the modern deep

learning architectures. Of the many DCNN architectures,

AlexNet [7], VGG [9], GoogLeNet [10, 64], Dense CNN [62]

and FractalNet [63] are generally considered the most popular

architectures because of their state-of-the-art performance on

different benchmarks for object recognition tasks. Among all of

these structures, some of the architectures are designed

especially for large scale data analysis (such as GoogLeNet and

ResNet), whereas the VGG network is considered a general

architecture. Some of the architectures are very dense in terms

of connectivity, such DenseNet [62]. Fractal Network is an

alternative of ResNet.

1) LeNet (1998)

Although LeNet was proposed in the 1990s, limited

computation capability and memory capacity made the

algorithm difficult to implement until about 2010 [49]. LeCun,

however, proposed CNNs with the back-propagation algorithm

and experimented on handwritten digits dataset to achieve state-

of-the-art accuracies. His architecture is well known as LeNet-

5 [49]. The basic configuration of LeNet-5 is (see Fig. 13): 2

convolution (conv) layers, 2 sub-sampling layers, 2 fully

connected layers, and an output layer with Gaussian

connection. The total number of weight and MACs are 431k

and 2.3M respectively.

As computational hardware started improving in capability,

CNNs stated becoming popular as an efficient learning

approach in the computer vision and machine learning

communities.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Fig. 13. Architecture of LeNet

2) AlexNet (2012)

 In 2012, Alex Krizhevesky and others proposed a deeper and

wider CNN model compared to LeNet and won the most

difficult ImageNet challenge for visual object recognition

called the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) in 2012 [7]. AlexNet achieved state-of-the-art

recognition accuracy against all the traditional machine

learning and computer vision approaches. It was a significant

breakthrough in the field of machine learning and computer

vision for visual recognition and classification tasks and is the

point in history where interest in deep learning increased

rapidly.

The architecture of AlexNet is shown in Fig. 14. The first

convolutional layer performs convolution and max pooling with

Local Response Normalization (LRN) where 96 different

receptive filters are used that are 11×11 in size. The max

pooling operations are performed with 3×3 filters with a stride

size of 2. The same operations are performed in second layer

with 5×5 filters. 3×3 filters are used in the third, fourth, and fifth

convolutional layers with 384, 384, and 296 feature maps

respectively. Two fully connected (FC) layers are used with

dropout followed by a Softmax layer at the end. Two networks

with similar structure and the same number of feature maps

are trained in parallel for this model. Two new concepts, Local

Response Normalization (LRN) and dropout, are introduced in

this network. LRN can be applied in two different ways: first

applying on single channel or feature maps, where an N×N

patch is selected from same feature map and normalized based

one the neighborhood values. Second, LRN can be applied

across the channels or feature maps (neighborhood along the

third dimension but a single pixel or location).

Fig. 14. Architecture of AlexNet: Convolution, max-pooling, LRN and fully

connected (FC) layer

AlexNet has 3 convolution layers and 2 fully connected layers.

When processing the ImageNet dataset, the total number of

parameters for AlexNet can be calculated as follows for the first

layer: input samples are 224×224×3, filters (kernels or masks)

or receptive field have size 11, the stride is 4, and the output of

the first convolution layer is 55×55×96. According to the

equations in section 3.1.4, we can calculate that this first layer

has 290400 (55×55×96) neurons and 364 (11 ×11×3 = 363 + 1

bias) weights. The parameters for the first convolution layer are

290400×364 = 105,705,600. Table II shows the number of

parameters for each layer in millions. The total number of

weights and MACs for the whole network are 61M and 724M

respectively.

3) ZFNet / Clarifai (2013)

In 2013, Matthew Zeiler and Rob Fergue won the 2013

ILSVRC with a CNN architecture which was an extension of

AlexNet. The network was called ZFNet [8], after the authors’

names. As CNNs are expensive computationally, an optimum

use of parameters is needed from a model complexity point of

view. The ZFNet architecture is an improvement of AlexNet,

designed by tweaking with the network parameters of the latter.

ZFNet uses 7x7 kernels instead of 11x11 kernels to

significantly reduce the number of weights. This reduces the

number of network parameters dramatically and improves

overall recognition accuracy.

4) Network in Network (NiN)

This model is slightly different from the previous models where

a couple of new concepts are introduced [60]. The first

concept is to use multilayer perception convolution, where

convolutions are performed with a 1×1 filter that helps to add

more nonlinearity in the models. This helps to increase the

depth of the network, which can then be regularized with

dropout. This concept is used often in the bottleneck layer of a

deep learning model.

The second concept is to use Global Average Pooling (GAP) as

an alternative of fully connected layers. This helps to reduce the

number of network parameters significantly. GAP changes the

network structure significantly. By applying GAP on a large

feature map, we can generate a final low dimensional feature

vector without reducing the dimension of the feature maps.

5) VGGNET (2014)

The Visual Geometry Group (VGG), was the runner up of the

2014 ILSVRC [9]. The main contribution of this work is that it

shows that the depth of a network is a critical component to

achieve better recognition or classification accuracy in CNNs.

The VGG architecture consists of two convolutional layers both

of which use the ReLU activation function. Following the

activation function is a single max pooling layer and several

fully connected layers also using a ReLU activation function.

The final layer of the model is a Softmax layer for classification.

In VGG-E [9] the convolution filter size is changed to a 3x3

filter with a stride of 2. Three VGG-E [9] models,VGG-

11,VGG-16, and VGG-19; were proposed the models had

11,16,and 19 layers respectively.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

Fig. 15. Basic building block of VGG network: Convolution

(Conv) and FC for fully connected layers

 All versions of the VGG-E models ended the same with three

fully connected layers. However, the number of convolution

layers varied VGG-11 contained 8 convolution layers, VGG-16

had 13convolution layers, and VGG-19 had 16convolution

layers. VGG-19, the most computational expensive model,

contained 138Mweights and had 15.5G MACs.

6) GoogLeNet (2014)

GoogLeNet, the winner of ILSVRC 2014[10], was a model

proposed by Christian Szegedy of Google with the objective of

reducing computation complexity compared to the traditional

CNN. The proposed method was to incorporate “Inception

Layers” that had variable receptive fields, which were created

by different kernel sizes. These receptive fields created

operations that captured sparse correlation patterns in the new

feature map stack.

Fig. 16. Inception layer: naive version

 The initial concept of the Inception layer can be seen in Fig.

16. GoogLeNet improved the state of the art recognition

accuracy using a stack of Inception layers seen in Fig. 17. The

difference between the naïve inception layer and final Inception

Layer was the addition of 1x1 convolution kernels. These

kernels allowed for dimensionality reduction before

computationally expensive layers. GoogLeNet consisted of 22

layers in total, which was far greater than any network before

it. However, the number of network parameters GoogLeNet

used was much lower than its predecessor AlexNet or VGG.

GoogLeNet had 7M network parameters when AlexNet had

60M and VGG-19 138M. The computations for GoogLeNet

also were 1.53G MACs far lower than that of AlexNet or VGG.

Fig. 17. Inception layer with dimension reduction

7) Residual Network (ResNet in 2015)

 The winner of ILSVRC 2015 was the Residual Network

architecture, ResNet[11]. Resnet was developed by Kaiming He

with the intent of designing ultra-deep networks that did not

suffer from the vanishing gradient problem that predecessors

had. ResNet is developed with many different numbers of

layers; 34, 50,101, 152, and even 1202. The popular ResNet50

contained 49 convolution layers and 1 fully connected layer at

the end of the network. The total number of weights and MACs

for the whole network are 25.5M and 3.9G respectively.

Fig. 18. Basic diagram of Residual block

The basic block diagram of ResNet architecture is shown in

Fig. 18. ResNet is a traditional feed forward network with a

residual connection. The output of a residual layer can be

defined based on the outputs of (𝑙 − 1)𝑡ℎ which comes from

the previous layer defined as 𝑥𝑙−1 . ℱ(𝑥𝑙−1) is the output after

performing various operations (e.g. convolution with different

size of filters, Batch Normalization (BN) followed by an

activation function such as a ReLU on 𝑥𝑙−1). The final output

of residual unit is 𝑥𝑙 which can be defined with the following

equation:

 𝑥𝑙 = ℱ(𝑥𝑙−1) + 𝑥𝑙−1 (21)

The residual network consists with several basic residual

blocks. However, the operations in the residual block can be

varied depending on the different architecture of residual

networks [11]. The wider version of residual network was

proposed by Zagoruvko el at. In 2016 [66]. Another improved

residual network approach known as aggregated residual

transformation was proposed in 2016[67]. Recently, some other

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

variants of residual models have been proposed based on the

Residual Network architecture [68, 69, and 70]. Furthermore,

there are several advanced architectures that have been

proposed with combination of Inception and Residual units.

The basic conceptual diagram of Inception-Residual unit is

shown in the following Fig.19.

Fig. 19. Basic block diagram for Inception Residual unit

Mathematically, this concept can be represented as

 𝑥𝑙 = ℱ(𝑥𝑙−1
3×3 ⨀ 𝑥𝑙−1

5×5) + 𝑥𝑙−1 (22)

Where the symbol ⨀ refers the concentration operations

between two outputs from the 3×3 and 5×5 filters. After that

the convolution operation is performed with 1×1 filters. Finally,

the outputs are added with the inputs of this block of 𝑥𝑙−1 .The

concept of Inception block with residual connections is

introduced in the Inception-v4 architecture [65]. The improved

version of the Inception-Residual network known as PolyNet

was recently proposed [70,290].

8) Densely Connected Network (DenseNet)

DenseNet developed by Gao Huang and others in 2017[62],

which is consists of densely connected CNN layers, the outputs

of each layer are connected with all successor layers in a dense

block [62]. Therefore, it is formed with dense connectivity

between the e layer rewarding it the name “DenseNet”. This

concept is efficient for feature reuse, which dramatically

reduces network parameters. DenseNet consists of several

dense blocks and transition blocks which are placed between

two adjacent dense blocks. The conceptual diagram of a dense

block is shown in Fig. 20.

Fig. 20. A 4-layer Dense block with growth rate of 𝑘 = 3.

Each layer takes all the preceding feature maps as input.

When deconstructing Fig. 20, the 𝑙𝑡ℎ layer received all the

feature maps from previous layers of 𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1 as input:

 𝑥𝑙 = 𝐻𝑙([𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1]) (23)

Where [𝑥0, 𝑥1, 𝑥2 ⋯ 𝑥𝑙−1] are the concatenated features for

layers 0, ⋯ ⋯ , 𝑙 − 1 and 𝐻𝑙(∙) is considered as a single tensor.

It performs three different consecutive operations: Batch-

Normalization (BN) [110], followed by a ReLU [58] and a 3 ×
3 convolution operation. In the transaction block, 1 × 1

convolutional operations are performed with BN followed by

2 × 2 average pooling layer. This new model shows state-of-

the-art accuracy with a reasonable number of network

parameters for object recognitions tasks.

9) FractalNet (2016)

This architecture is an advanced and alternative architecture of

ResNet model, which is efficient for designing large models

with nominal depth, but shorter paths for the propagation of

gradient during training [63]. This concept is based on drop-

path which is another regularization approach for making large

networks. As a result, this concept helps to enforce speed versus

accuracy tradeoffs. The basic block diagram of FractalNet is

shown in Fig. 21.

Fig. 21. The detailed FractalNet module on the left and FractalNet on the

right

C. CapsuleNet

CNN is very smart to detect the feature of an object and

represents effectively resulting good recognition performance

compare to handcraft features based approach. However, there

is a limitation of CNN is that CNN effective at exploring special

relationships (perspective, size, and orientation) among

features. For example: if you have face image, it does not matter

the placement of different components (nose, eye, mouth etc.)

of the faces still neurons of CNN will wrongly active and

recognition as face without considering special relationship

(orientation, size). Now, imagine a neuron which contains the

likelihood with properties of features (perspective, orientation,

size etc.). Therefore, this special type of neurons can detect face

efficiently with distinct information. These special type of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

neuron is called capsules. The capsule network consists with

several layers of capsule nodes. The very first version of

capsule network (CapsNet) consisted with three layers of

capsule nodes in encoding unit.

Fig.22. A CapsNet encoding unit with 3 layers. The instance of each class is

represented with a vector of a capsule in DigitCaps layer that is used for

calculating classification loss. The weights between primary capsule layer and

DigitCaps layer are represented with 𝑊𝑖𝑗.

This architecture for MNIST (28×28) images, the 256 9×9

kernels are applied with stride 1, so the outputs is (28 − 9 +
1 = 20) with 256 feature maps. Then the outputs are feed to

primary capsule layer which is modified convolution layer that

generates 8-D vector instead of scalar. In first convolutional

layer, 9×9 kernels are applied with stride 2, the output

dimension is ((20 − 9)/2 + 1 = 6). The primary capsules are

used 8×32 kernels which generates 32×8×6×6 (32 groups for 8

neurons with 6×6 size).

Fig. 23. The decoding unit where a digit is reconstructed from DigitCaps layer

representation. The Euclidean distance is used minimizing error between input
sample and reconstructed sample from sigmoid layer. True labels are used for

reconstruction target during training.

The entire encoding and decoding processes of CapsNet is

shown in Fig. 22 and Fig. 23 respectively. We used max pooling

layer in CNN very often that can handle translation variance.

Even if feature move, if it is still under max pooling window

can be detected. As the capsule contains the weighted sum of

features from the previous layer, therefore this approach

capable to detect overlapped features which is very important

for segmentation and detection tasks.

In the traditional CNN, we have used single cost function to

evaluate the overall error which propagate backward during

training. However, in this case if the weight between to neurons

is zero then activation of a neuron is not propagated that neuron.

The signal is routed with respect to the feature parameters rather

than one size fit all cost function in iterative dynamic routing

with agreement. For details about this architecture, please see

[293]. This new architecture of CNN providing state-of-the-art

accuracy for handwritten digits recognition on MNIST.

However, from application point of view, this architecture is

more suitable for segmentation and detection tasks compare to

classification tasks.

D. Comparison on different models

The comparison of recently proposed models based on error,

network parameters, and maximum number of connections are

given in Table II.

E. Other models

There are many other network architectures such as fast region

based CNN [71] and Xception [72] which are popular in the

computer vision community. In 2015 a new model was

proposed using recurrent convolution layers named Recurrent

Convolution Neural Network or RCNN[73]. The improved

version of this network is a combination of the two most

popular architectures in the Inception network and Recurrent

Convolutional Network, Inception Convolutional Recurrent

Neural Networks(IRCNN)[74]. IRCNN provided better

accuracy compared RCNN and inception network with almost

identical network parameters. Visual Phase Guided CNN (ViP

CNN) is proposed with phase guided message passing structure

(PMPS) to build connections between relational components,

which show better speed up and recognition accuracy [75].

Look up based CNN[76] is a fast, compact, and accurate model

enabling efficient inference. In 2016 the architecture known as

fully convolutional network (FCN) was proposed for

segmentation tasks where it is now commonly used. Other

recently proposed CNN models include deep network with

stochastic depth, deeply-supervised networks and ladder

network [79, 80, and 81]

The Question is, do deep nets really need to be deeper?

Some papers have been published base on the justification for

deeper networks and concluded that “Deeper is better” [82, 83].

Now the question is which one is better width versus depth? On

the one hand, there is controversy whether deep or wide

networks are better some studies can be seen in the following

papers [84, 85, 86]. As DL approaches are data driven

techniques which require a lot of labeled samples for training

for the supervised approach. Recently some frameworks have

been developed for making efficient databases from labeled and

un-labeled datasets [87, 88].

Hyper parameter optimization allows for variable levels of

performance, which is helpful for creating models to pair with

designing hardware for deep learning [89,90].

F. Applications of CNNs

Most of the techniques that have discussed above are evaluated

on computer vision and image processing tasks. Here are some

recently published papers that have been discussed, which are

applied for different modalities of computer vision and image

processing.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

1) CNNs for solving Graph problem

Learning graph data structures is a common problem with

various different applications in data mining and machine

learning tasks. DL techniques have made a bridge in between

the machine learning and data mining groups. An efficient CNN

for arbitrary graph processing was proposed in 2016[91].

2) Image processing and computer vision

Most of the models, we have discussed above are applied on

different application domains including image classification,

detection, segmentation, localization, captioning, video

classification and many more. There is a good survey on deep

learning approaches for image processing and computer vision

related tasks [92]. Single image super-resolution using CNN

methods [93]. Image de-noising using block-matching CNN

[94]. Photo aesthetic assessment using A-Lamp: Adaptive

Layout-Aware Multi-Patch Deep CNN [95]. DCNN for hyper

spectral imaging for segmentation using Markov Random Field

(MRF) [96]. Image registration using CNN [97]. The

Hierarchical Deep CNN for Fast Artistic Style Transfer [98].

Background segmentation using DCNN [99]. Handwritten

character recognition using DCNN approaches [291]. Optical

image classification using deep learning approaches [296].

Object recognition using cellular simultaneous recurrent

networks and convolutional neural network [297].

3) Speech processing

CNN methods are also applied for speech processing: speech

enhancement using multimodal deep CNN [100], and audio

tagging using Convolutional Gated Recurrent Network

(CGRN) [101].

4) CNN for medical imaging

A good survey on DL for medical imaging for classification,

detection, and segmentation tasks [102]. There are some papers

published after this survey. MDNet, which was developed for

medical diagnosis with images and their corresponding text

description [103]. Cardiac Segmentation using short-Axis MRI

[104]. Segmentation of optic disc and retina vasculature using

CNN [105]. Brain tumor segmentation using random forests

with features learned with fully convolutional neural network

(FCNN) [106]. Very recent, an improved version of U-Net[300]

with Recurrent Residual Convolutional Neural Networks

(RRCNN) which is named R2U-Net [301].

IV. ADVANCED TRAINING TECHNIQUES

What is missing in the previous section is the advanced training

techniques or components which need to be considered

carefully for efficient training of DL approaches. There are

different advanced techniques to apply to train a deep learning

model better. The techniques including input pre-processing,

better initialization method, batch normalization, alternative

convolutional approaches, advanced activation functions,

alternative pooling techniques, network regularization

approaches, and better optimization method for training. The

following sections are discussed on individual advanced

training techniques individually.

A. Preparing dataset

Presently different approaches have been applied before

feeding the data to the network. The different operations to

prepare a dataset are as follows; sample rescaling, mean

subtraction, random cropping, flipping data with respective to

the horizon or vertical axis, color jittering, PCA/ZCA whitening

and many more.

B. Network initialization

The initialization of deep networks has a big impact on the

overall recognition accuracy [53,54]. Previously, most of the

networks have been initialized with random weights. For

complex tasks with high dimensionality data training a DNN

becomes difficult because weights should not be symmetrical

due to the back-propagation process. Therefore, effective

initialization techniques are important to training this type of

DNN. However, there are many efficient techniques that have

been proposed during last few years. In 1998, LeCun [107] and

TABLE II. THE TOP-5% ERRORS WITH COMPUTATIONAL PARAMETERS AND MACS FOR DIFFERENT DEEP CNN MODELS.

Methods LeNet-

5[48]

AlexNet

[7]

OverFeat

(fast)[8]

VGG-

16[9]

GoogLeNet [10] ResNet-

50(v1)[11]

Top-5 errors n/a 16.4 14.2 7.4 6.7 5.3

Input size 28x28 227x227 231x231 224x224 224x224 224x224

Number of Conv Layers 2 5 5 16 21 50

Filter Size 5 3,5,11 3,7 3 1,3,5,7 1,3,7

Number of Feature Maps 1,6 3-256 3-1024 3-512 3-1024 3-1024

Stride 1 1,4 1,4 1 1,2 1,2

Number of Weights 26k 2.3M 16M 14.7M 6.0M 23.5M

Number of MACs 1.9M 666M 2.67G 15.3G 1.43G 3.86G

Number of FC layers 2 3 3 3 1 1

Number of Weights 406k 58.6M 130M 124M 1M 1M

Number of MACs 405k 58.6M 130M 124M 1M 1M

Total Weights 431k 61M 146M 138M 7M 25.5M

Total MACs 2.3M 724M 2.8G 15.5G 1.43G 3.9G

http://arxiv.org/abs/1705.05084v1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

16

Y. Bengio in 2010 [108] proposed a simple but effective

approach. In this method, the weights are scaled by the inverse

of the square root of number of input neurons of the layer,

which can be stated 1 √𝑁𝑙⁄ , where 𝑁𝑙 is the number of input

neurons of 𝑙𝑡ℎ layer. The deep network initialization approach

of Xavier has been proposed based on the symmetric activation

function with respect to the hypothesis of linearity. This

approach is known as “Xavier” initialization approach.

 Recently in 2016, Dmytro M. et al. proposed Layer-sequential

unit-invariance(LSUV), which is a data-driven initialization

approach and provides good recognition accuracy on several

benchmark datasets including ImageNet [85]. One of the

popular initialization approaches has proposed by Kiming He

in 2015 [109]. The distribution of the weights of lth layer will

be normal distribution with mean zero and variance
2

𝑛𝑙
 which

can be expressed as follows.

𝑤𝑙~𝒩 (0,
2

𝑛𝑙
) (24)

C. Batch Normalization

Batch normalization helps accelerate DL processes by reducing

internal covariance by shifting input samples. What that means

is the inputs are linearly transformed to have zero mean and unit

variance. For whitened inputs, the network converges faster

and shows better regularization during training, which has an

impact on the overall accuracy. Since the data whitening is

performed outside of the network, there is no impact of

whitening during training of the model. In the case of deep

recurrent neural networks the inputs of the nth layer are the

combination of n-1th layer, which is not raw feature inputs. As

the training progresses the effect of normalization or whitening

reduce respectively, which causes the vanishing gradient

problem. This can slow down entire training process and cause

saturation. To better the training process during training batch

normalization is then applied to the internal layers of the deep

neural network. This approach ensures faster convergence in

theory and during experiment on benchmarks. In batch

normalization, the features of a layer are independently

normalized with mean zero and variance one [110,111]. The

algorithm of Batch normalization is given in Algorithm IV.

Algorithm IV: Batch Normalization (BN)

Inputs: Values of x over a mini-batch: 𝔅 = {𝑥1,2,3……,𝑚}

Outputs: {yi = BNγ,β(xi)}

μ𝔅 ←
1

m
∑ xi

m
i=1 // mini-batch mean

𝜎𝔅
2 ←

1

𝑚
∑ (𝑥𝑖 − 𝜇𝔅)2𝑚

𝑖=1 // mini-batch variance

�̂�𝑖 ←
𝑥𝑖−𝜇𝔅

√𝜎𝔅
2+∈

 // normalize

𝑦𝑖 = 𝛾�̂�𝑖 + 𝛽 ≡ BNγ,β(xi) // Scaling and shifting

The parameters 𝛾 and 𝛽 are used for the scale and shift factor

for the normalization values, so normalization does not only

depend on layer values. If you use normalization techniques,

the following criterions are recommended to consider during

implementation:

 Increase learning rate

 Dropout (batch normalization does the same job)

 L2 weight regularization

 Accelerating the learning rate decay

 Remove Local Response Normalization (LRN) (if you

used it)

 Shuffle training sample more thoroughly

 Use less distortion of images in the training set

D. Alternative Convolutional methods

Alternative and computationally efficient convolutional

techniques that reduces the cost of multiplications by factor of

2.5 have been proposed [112].

E. Activation function

The traditional Sigmoid and Tanh activation functions have

been used for implementing neural network approaches in the

past few decades. The graphical and mathematical

representation is shown in the following Fig. 24.

(a)

(b)
Fig. 24. Activation function: (a) sigmoid function and (b) Hyperbolic transient

Sigmoid:

 𝑦 =
1

1+𝑒𝑥 (25)

TanH:

 𝑦 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 (26)

The popular activation function called Rectified Linear Unit

(ReLU) proposed in 2010 solves the vanishing gradient

problem for training deep learning approaches. The basic

concept is simple keep all the values above zero and sets all

negative values to zero that is shown in Fig. 25[58]. The ReLU

activation was first used in AlexNet, which was a breakthrough

deep CNN proposed in 2012 by Hinton [7].

Fig. 25. Pictorial representation of Rectified Linear Unit (ReLU)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

17

Mathematically we can express ReLU as follows:

𝑦 = max (0, 𝑥) (27)

As the activation function plays a crucial role in learning the

weights for deep architectures. Many researchers focus here

because there is much that can be done in this area. Meanwhile,

there are several improved versions of ReLU that have been

proposed, which provides even better accuracy compared to the

ReLU activation function. An efficient improved version of

ReLU activation function is called the parametric ReLU

(PReLU) proposed by Kaiming He et al. in 2015. The Fig.26

shows the pictorial representation of Leaky ReLU and ELU

activation functions. This technique can automatically learn the

parameters adaptively and improve the accuracy at negligible

extra computing cost [109].

(a)

(b)
Fig. 26. Diagram for (a) Leaky ReLU (b) Exponential Linear Unit (ELU)

Leaky ReLU:

 𝑦 = max (𝑎𝑥, 𝑥) (28)

Here 𝑎 is a constant, the value is 0.1.

ELU:

 𝑦 = {
𝑥, 𝑥 ≥ 0

𝑎(𝑒𝑥 − 1), 𝑥 < 0
 (29)

The recent proposal of the Exponential Linear Unit activation

function, which allowed for a faster and more accurate version

of thte DCNN structure [113]. Furthermore, tuning the negative

part of activation function creates the leaky ReLU with Multiple

Exponent Linear Unit (MELU) that are proposed recently

[114]. S shape Rectified Linear Activation units are proposed

in 2015 [115]. A survey on modern activation functions was

conducted in 2015 [116].

F. Sub-sampling layer or pooling layer

At present, two different techniques have been used for

implementation of deep networks in the sub-sampling or

pooling layer: average and max-pooling. The concept of

average pooling layer was used for the first time in LeNet [49]

and AlexNet used Max-pooling layers instead in 2012[7]. The

conceptual diagram for max pooling and average pooling

operation are shown in the Fig 27. The concept of special

pyramid pooling has been proposed by He et al. in 2014 which

is shown in Fig. 28 [117].

Fig. 27. Average and max pooling operations.

The multi-scale pyramid pooling was proposed in 2015 [118].

In 2015, Benjamin G. proposed a new architecture with

Fractional max pooling, which provides state-of-the-art

classification accuracy for CIFAR-10 and CIFAR-100 datasets.

This structure generalizes the network by considering two

important properties for sub-sampling layer or pooling layer.

First, the non-overlapped max-pooling layer limits the

generalize of the deep structure of the network, this paper

proposed a network with 3x3 overlapped max-pooling with 2-

stride instead of 2x2 as sub-sampling layer [119]. Another

paper which has conducted research on different types of

pooling approaches including mixed, gated, and tree as

generalization of pooling functions [120].

Fig. 28. Spatial pyramid pooling

G. Regularization approaches for DL

There are different regularization approaches that have been

proposed in the past few years for deep CNN. The simplest but

efficient approach called “dropout” was proposed by Hinton in

2012 [121]. In Dropout a randomly selected subset of

activations is set to zero within a layer [122]. The dropout

concept is shown in Fig. 29.

Fig. 29. Pictorial representation of the concept Dropout

Another regularization approach is called Drop Connect, in this

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

18

case instead of dropping the activation, the subset of weights

within the network layers are set to zero. As a result, each layer

receives the randomly selected subset of units from the

immediate previous layer [123]. Some other regularization

approaches are proposed as well, details in [124].

H. Optimization methods for DL

There are different optimization methods such as SGD,

Adagrad, AdaDelta, RMSprop, and Adam [125]. Some

activation functions have been improved upon such as in the

case of SGD where it was been proposed with an added variable

momentum, which improved training and testing accuracy. In

the case of Adagrad, the main contribution was to calculate

adaptive learning rate during training. For this method the

summation of magnitude of the gradient is considered to

calculate the adaptive learning rate. In the case with a large

number of epochs, the summation of magnitude of gradient

becomes large. The result of this is the learning rate decreases

radically, which causes the gradient to approach zero quickly.

The main drawback to this approach is that it causes problems

during training. Later, RMSprop was proposed considering

only the magnitude of gradient of immediate previous iteration,

which prevents the problems with Adagrad and provides better

performance in some cases. The Adam optimization approach

is proposed based on the momentum and the magnitude of the

gradient for calculating adaptive learning rate similar

RMSprop. Adam has improved overall accuracy and helps for

efficient training with better convergence of deep learning

algorithms [126]. The improved version of the Adam

optimization approach has been proposed recently, which is

called EVE. EVE provides even better performance with fast

and accurate convergence [127].

V. RECURRENT NEURAL NETWORKS (RNN)

A. Introduction

Human thoughts have persistence; Human don’t throw e thing

away and start their thinking from the scratch in a second. As

you are reading this article, you are understanding each word or

sentence based on the understanding of previous words or

sentences. The traditional neural network approaches including

DNNs and CNNs cannot deal with this type of problem. The

standard Neural Networks and CNN are incapable due to the

following reasons. First, these approaches only handle a fixed-

size vector as input (e.g., an image or video frame) and produce

a fixed-size vector as output (e.g., probabilities of different

classes). Second, those models operate with a fixed number of

computational steps (e.g. the number of layers in the model).

The RNNs are unique as they allow operation over a sequence

of vectors over time. This idea of RNNs were developed in

1980. The Hopfield Newark introduced this concept in 1982 but

the idea was described shortly in 1974 [128]. The pictorial

representation is shown in Fig. 30.

Fig. 30. The structure of basic RNNs with loop.

Different versions of RNNs have been proposed in Jordan and

Elman. In The Elman architecture uses the output from a hidden

layers as inputs alongside the normal inputs of hidden layers

[129]. On the other hand, the outputs from output unit are used

as inputs with the inputs of hidden layer in Jordan network

[130]. Jordan in contrast uses inputs from the outputs of the

output unit with the inputs to the hidden layer. Mathematically

we can express these as:

Elman network [129]:

ℎ𝑡 = 𝜎ℎ(𝑤ℎ𝑥𝑡 + 𝑢ℎℎ𝑡−1 + 𝑏ℎ) (30)

𝑦𝑡 = 𝜎𝑦(𝑤𝑦ℎ𝑡 + 𝑏𝑦) (31)

Jordan network [130]

ℎ𝑡 = 𝜎ℎ(𝑤ℎ𝑥𝑡 + 𝑢ℎ𝑦𝑡−1 + 𝑏ℎ) (32)

𝑦𝑡 = 𝜎𝑦(𝑤𝑦ℎ𝑡 + 𝑏𝑦) (33)

Where 𝑥𝑡 is a vector of inputs, ℎ𝑡 are hidden layer vectors, 𝑦𝑡

are the output vectors, w and u are weight matrices and b is the

bias vector.

A loop allows information to be passed from one step of the

network to the next. A recurrent neural network can be thought

of as multiple copies of the same network, each network passing

a message to a successor. The diagram below shows what

happens if we unroll the loop.

Fig. 31. An unrolled RNNs

 The main problem with RNN approaches is the experience the

vanishing gradient problem. For the first time, this problem is

solved by Hochreiter el at. in 1992 [131]. A deep RNN

consisting of 1000 subsequent layers was implemented and

evaluated to solve deep learning tasks in 1993 [132]. There are

several solutions that have been proposed for solving the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

19

vanishing gradient problem of RNN approaches in the past few

decades. Two possible effective solutions to this problem are

first to clip the gradient and scale the gradient if the norm is too

large, and secondly create a better RNN model. One of better

models was introduced by Felix A. el at. in 2000 named Long

Short-Term Memory (LSTM) [133,134]. From the LSTM there

have been different advanced approaches proposed in the last

few years which are explained in the following sections.

However, the RNN approaches are allowed sequences in the

input, the output, or in the most general case both. For example:

DL for Text Mining, building deep learning models on textual

data requires representation of the basic text unit and word.

Neural network structures that can hierarchically capture the

sequential nature of text. In most of these cases RNNs or

Recursive Neural Networks are used for language

understanding [292]. In the language modeling, it tries to

predict the next word or set of words or some cases sentences

based on the previous ones [135]. RNNs are networks with

loops in them, allowing information to persist. Another

example: the RNNs are able to connect previous information to

the present task: using previous video frames, understanding the

present and trying to generate the future frames as well [142].

Fig. 32. Diagram for Long Short Term Memory (LSTM)

B. Long Short Term Memory (LSTM)

The key idea of LSTMs is the cell state, the horizontal line

running through the top of the Fig. 32. LSTMs remove or add

information to the cell state called gates: input gate(𝑖𝑡), forget

gate (𝑓𝑡) and output gate(𝑜𝑡) can be defined as :

 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (34)

 𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (35)

 �̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝐶−1, 𝑥𝑡] + 𝑏𝐶) (36)

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (37)

 𝑂𝑡 = 𝜎(𝑊𝑂 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂) (38)

 ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (39)

LSTM models are popular for temporal information processing.

Most of the papers that include LSTM models with some minor

variance. Some of them are discussed in the following section.

There is a slightly modified version of the network with

“peephole connections” by Gers and Schimidhuber proposed in

2000. The concept of peepholes is included with almost all the

gated in this model.

Fig. 33. Diagram for Gated Recurrent Unit (GRU)

C. Gated Recurrent Unit (GRU)

GRU also came from LSTMs with a slightly more variation by

Cho, et al. in 2014. GRUs are now popular in the community

who are working with recurrent networks. The main reason of

the popularity is computation cost and simplicity of the model,

which is shown in Fig. 33. GRUs are lighter versions of RNN

approaches than standard LSTM in term of topology,

computation cost and complexity [136]. This technique is

combines the forget and input gates into a single “update gate”

and merges the cell state and hidden state along with some other

changes. The simpler model of the GRU has been growing

increasingly popular. Mathematically the GRU can be

expressed with the following equations:

 𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡]) (40)

 𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡]) (41)

 ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊. [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (42)

 ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 (43)

The question is: which one is the best? According to the

different empirical studies there is no clear evidence of a

winner. However, the GRU requires fewer network parameters,

which makes the model faster. On the other hand, LSTM

provides better performance, if you have enough data and

computational power [137]. There is a variant LSTM named

Deep LSTM [138]. Another variant that is bit different

approach called “A clockwork RNN” [139]. There is an

important empirical evaluation on a different version of RNN

approaches including LSTM by Greff , et al. in 2015 and the

final conclusion was all the LSTM variants were all about the

same [140]. Another empirical evaluation is conducted on

thousands of RNN architecture including LSTM, GRU and so

on finding some that worked better than LSTMs on certain tasks

[141]

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

20

D. Convolutional LSTM (ConvLSTM)

The problem with fully connected (FC) LSTM and short FC-

LSTM model is handling spatiotemporal data and its usage of

full connections in the input-to-state and state-to-state

transactions, where no spatial information has been encoded.

The internal gates of ConvLSTM are 3D tensors, where the last

two dimensions are spatial dimensions (rows and columns).

The ConvLSTM determines the future state of a certain cell in

the grid with respect to inputs and the past states of its local

neighbors which can be achieved using convolution operations

in the state-to-state or inputs-to-states transition show in Fig.

34.

Fig. 34. Pictorial diagram for ConvLSTM [142]

ConvLSTM is providing good performance for temporal data

analysis with video datasets [142]. Mathematically the

ConvLSTM is expressed as follows where * represents the

convolution operation and ∘ denotes for Hadamard product:

 it = σ(wxi . 𝒳t + whi ∗ ℋt−1 + whi ∘ 𝒞t−1 + bi) (44)

ft = σ(wxf . 𝒳t + whf ∗ ℋt−1 + whf ∘ 𝒞t−1 + bf) (45)

Ct̃ = tanh(wxc . 𝒳t + whc ∗ ℋt−1 + bC) (46)

 Ct = ft ∘ Ct−1 + it ∗ Ct̃ (47)

 ot = σ(wxo . 𝒳t + who ∗ ℋt−1 + who ∘ 𝒞t + bo (48)

 ht = ot ∘ tanh (Ct) (49)

E. Variant of architectures of RNN with respective to the

applications

To incorporate the attention mechanism with RNNs, Word2Vec

is used in most of the cases for word or sentence encoding.

Word2vec is a powerful word embedding technique with a 2-

layer predictive NN from raw text inputs. This approach is used

in the different fields of application including unsupervised

learning with words, relationship learning between the different

words, the ability to abstract higher meaning of the words based

on the similarity, sentence modeling, language understanding

and many more. There are different other word embedding

approaches that have been proposed in the past few years which

are used to solve difficult tasks and provide state-of-the-art

performance including machine translation and language

modeling, Image and video captioning and time series data

analysis [143,144, and 288].

 (a) (b) (c)

 (d) (e)

Fig. 35. Different structure of RNN with respect to the applications: (a) One to

one (b) Many to one (c) One to many (d) Many to many and (e) Many to many

From the application point of view, RNNs can solve different

types of problems which need different architectures of RNNs

shown in Fig. 35. In Fig. 35, Input vectors are represented as

green, RNN states are represented with blue and orange

represents the output vector. These structures can be described

as:

One to One: Standard mode for classification without RNN

(e.g. image classification problem) shown Fig. 35 (a)

Many to One: Sequence of inputs and single output (e.g. the

sentiment analysis where inputs are a set of sentences or words

and output is positive or negative expression) shown Fig. 35 (b)

One to Many: Where a system takes an input and produces a

sequence of outputs (Image Captioning problem: input is a

single image and output is a set of words with context) shown

Fig. 35 (c).

Many to Many: sequences of inputs and outputs (e.g. machine

translation: machine takes a sequence of words from English

and translates to a sequence of words in French) shown Fig. 35

(d).

Many to Many: sequence to sequence learning (e.g. video

classification problem in which we take video frames as input

and wish to label each frame of the video shown Fig. 35(e).

F. Attention based models with RNN

Different attention based models have been proposed using

RNN approaches. First initiative for RNNs with attention that

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

21

automatically learns to describe the content of images is

proposed by Xu, et al. in 2015 [145]. A dual state attention

based RNN is proposed for effective time series prediction

[146]. Another difficult task is Visual Question Answering

(VQA) using GRUs where the inputs are an image and a natural

language question about the image, the task is to provide an

accurate natural language answer. The output is to be

conditional on both image and textual inputs. A CNN is used to

encode the image and a RNN is implemented to encode the

sentence [147]. Another, outstanding concept is released from

Google called Pixel Recurrent Neural Networks (Pixel RNN).

This approach provides state-of-the-art performance for image

completion tasks [148]. The new model called residual RNN is

proposed, where the RNN is introduced with an effective

residual connection in a deep recurrent network [149].

G. RNN Applications

RNNs including LSTM and GRU are applied on Tensor

processing [150]. Natural Language Processing using RNN

techniques including LSTMs and GRUs [151,152].

Convolutional RNNs based on multi-language identification

system was been proposed in 2017 [153]. Time series data

analysis using RNNs [154]. Recently, TimeNet was proposed

based on pre-trained deep RNNs for time series classification

(TSC) [155]. Speech and audio processing including LSTMs

for large scale acoustic modeling [156,157]. Sound event

prediction using convolutional RNNs [158]. Audio tagging

using Convolutional GRUs [159]. Early heart failure detection

is proposed using RNNs [160].

RNNs are applied in tracking and monitoring: data driven

traffic forecasting systems are proposed using Graph

Convolutional RNN (GCRNN) [161]. An LSTM based network

traffic prediction system is proposed with a neural network

based model [162]. Bidirectional Deep RNN is applied for

driver action prediction [163]. Vehicle Trajectory prediction

using an RNN [164]. Action recognition using an RNN with a

Bag-of-Words [165]. Collection anomaly detection using

LSTMs for cyber security [166].

VI. AUTO-ENCODER (AE) AND RESTRICTED BOLTZMANN

MACHINE (RBM)

This section will be discussing one of the un-supervised deep

learning approaches the Auto Encoder [55] (e.g. variational

auto-encoder (VAE) [167], denoising AE [59], sparse AE

[168], stacked denoising AE [169], Split-Brain AE [170]). The

applications of different AE are also discussed in the end of this

chapter.

A. Review of Auto-Encoder (AE)

An AE is a deep neural network approach used for unsupervised

feature learning with efficient data encoding and decoding. The

main objective of auto encoder to learn and representation

(encoding) of data, typically for data dimensionality reduction,

compression, fusion and many more. This auto encoder

technique is consisted with two parts: the encoder and the

decoder. In the encoding phase, the input samples are mapped

usually in the lower dimensional features space with a

constructive feature representation. This approach can be

repeated until the desired feature dimensional space is reached.

Whereas in the decoding phase, we regenerate actual features

from lower dimensional features with reverse processing. The

conceptual diagram of auto-encoder with encoding and

decoding phases is shown in Fig. 36.

Fig. 36. Diagram for Auto encoder.

The encoder and decoder transition can be represented with ∅

and 𝜑

∅ ∶ 𝒳 → ℱ

𝜑 ∶ ℱ → 𝒳

 ∅, 𝜑 = 𝑎𝑟𝑔𝑚𝑖𝑛∅,𝜑 ‖𝑋 − (∅, 𝜑)𝑋‖2 (50)

If we consider a simple auto encoder with one hidden layer,

where the input is 𝑥 ∈ ℝ𝑑 = 𝒳,which is mapped onto ∈ ℝ𝑝 =
ℱ ,it can then be expressed as follows:

 𝑧 = 𝜎1(𝑊𝑥 + 𝑏) (51)

Where W is the weight matrix and b is bias. 𝜎1 represents an

element wise activation function such as a sigmoid or a rectified

linear unit (RLU). Let us consider 𝑧 is again mapped or

reconstructed onto 𝑥′ which is the same dimension of 𝑥. The

reconstruction can be expressed as

 𝑥′ = 𝜎2(𝑊′𝑧 + 𝑏′) (52)

This model is trained with minimizing the reconstruction errors,

which is defined as loss function as follows:

ℒ(𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖2 = ‖𝑥 − 𝜎2(𝑊′(𝜎1(𝑊𝑥 + 𝑏)) + 𝑏′)‖
2

(53)

Usually the feature space of ℱ has lower dimensions then the

input feature space 𝒳, which can be considered as the

compressed representation of the input sample. In the case of

multilayer auto encoder, the same operation will be repeated as

required with in the encoding and decoding phases. A deep

Auto encoder is constructed by extending the encoder and

decoder of auto encoder with multiple hidden layers. The

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

22

Gradient vanishing problem is still a big issue with the deeper

model of AE: the gradient becomes too small as it passes back

through many layers of a AE model. Different advanced AE

models are discussed in the following sections.

B. Variational auto encoders (VAEs)

There are some limitations of using simple Generative

Adversarial Networks (GAN) which are discussed in Section 7.

The limitations are: first, images are generated using GAN from

input noise. If someone wants to generate a specific image, then

it is difficult to select the specific features (noise) randomly to

produce desired images. It requires searching the entire

distribution. Second, GANs differentiate between ‘real’ and

‘fake’ objects. For example: if you want to generate a dog, there

is no constraint that the dog must be look like dog. Therefore,

it produces same style images which the style looks like a dog

but if we closely observed then it is not exactly. However, VAE

is proposed to overcome those limitation of basic GANs, where

the latent vector space is used to represent the images which

follow a unit Gaussian distribution. [167,174].

Fig. 37. Variational Auto-Encoder.

In this model, there are two losses, one is a mean squared error

that determines, how good the network is doing for

reconstructing image, and loss (the Kullback-Leibler (KL)

divergence) of latent, which determines how closely the latent

variable match is with unit Gaussian distribution. For example

suppose 𝑥 is an input and the hidden representation is z . The

parameters (weights and biases) are 휃 . For reconstructing the

phase the input is 𝑧 and the desired output is 𝑥. The parameters

(weights and biases) are 𝜙. So, we can represent the encoder as

𝑞𝜃(𝑧|𝑥) and decoder 𝑝𝜙(𝑥|𝑧) respectively. The loss function of

both networks and latent space can be represented as

 𝑙𝑖(휃, 𝜙) = −𝐸𝑧~𝑞𝜃(𝑧|𝑥𝑖)[𝑙𝑜𝑔𝑝𝜙(𝑥𝑖|𝑧)] + 𝐾𝐿(𝑞𝜃(𝑧|𝑥𝑖)| 𝑝(𝑧))

(54)

C. Split-Brain Auto-encoder

Recently Split-Brain AE was proposed from Berkeley AI

Research (BAIR) lab, which is the architectural modification of

traditional auto encoders for unsupervised representation

learning. In this architecture, the network is split into disjoint

sub-networks, where two networks try to predict the feature

representation of an entire image [170].

Fig. 38. Split-Brain Auto encoder

D. Applications of AE

AE is applied in Bio-informatics [102,171] and cyber security

[172,302]. We can apply AE for unsupervised feature

extraction and then apply Winner Take All (WTA) for

clustering those samples for generating labels [173]. AE has

been used as a encoding and decoding technique with or for

other deep learning approaches including CNN, DNN, RNN

and RL in the last decade. However, here are some other

approaches recently published [174,175]

E. Review of RBM

Restricted Boltzmann Machines (RBM) are another

unsupervised deep learning approach. The training phase can

be modeled using a two-layer network called a “Restricted

Boltzmann Machine” [176] in which stochastic binary pixels

are connected to stochastic binary feature detectors using

symmetrically weighted connections. RBM is an energy-based

undirected generative model that uses a layer of hidden

variables to model distribution over visible variables. The

undirected model for the interactions between the hidden and

visible variables is used to ensure that the contribution of the

likelihood term to the posterior over the hidden variables are

approximately factorial which greatly facilitates inference

[177]. The conceptual diagram of RBM is shown in Fig. 39.

Fig. 39. Block diagram for RBM

Energy-based models mean that the probability distribution

over the variables of interest is defined through an energy

function. The energy function is composed from a set of

observable variables s 𝑉 = {𝑣𝑖} and a set of hidden variables =
{ℎ𝑖} , where i is node in the visible layer, j node in the hidden

layer. It is restricted in the sense that there are no visible-visible

or hidden-hidden connections. The values corresponding to

“visible” units of the RBM because their states are observed;

the feature detectors correspond to “hidden” units. A joint

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

23

configuration, (v,h) of the visible and hidden units has an

energy (Hopfield, 1982) given by:

 𝐸(𝑣, ℎ) = − ∑ 𝑎𝑖𝑖 𝑣𝑖 − ∑ 𝑏𝑗𝑗 ℎ𝑗 − ∑ ∑ 𝑣𝑖𝑗 𝑤𝑖,𝑗 𝑖 ℎ𝑗 (55)

Where 𝑣𝑖 ℎ𝑗 are the binary states of visible unit 𝑖 and hidden

unit 𝑗, 𝑎𝑖, 𝑏𝑗 are their biases and 𝑤𝑖𝑗 is the weight between

them. The network assigns a probability to e possible pair of a

visible and a hidden vector via this energy function:

 𝑝(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ) (56)

where the “partition function”, 𝑍 , is given by summing over all

possible pairs of visible and hidden vectors:

 𝑍 = ∑ 𝑒−𝐸(𝑣,ℎ)
𝑣,ℎ (57)

The probability that the network assigns to a visible vector, v,

is given by summing over all possible hidden vectors:

 𝑝(𝑣) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ (58)

The probability that the network assigns to a training samples

can be raised by adjusting the weights and biases to lower the

energy of that samples and to raise the energy of other samples,

especially those have low energies and therefore make a big

contribution to the partition function. The derivative of the log

probability of a training vector with respect to a weight is

surprisingly simple.

𝜕𝑙𝑜𝑔𝑝(𝑣)

𝜕𝑤𝑖𝑗
= ⟨𝑣𝑖ℎ𝑗⟩

𝑑𝑎𝑡𝑎
− ⟨𝑣𝑖ℎ𝑗⟩

𝑚𝑜𝑑𝑒𝑙
 (59)

where the angle brackets are used to denote expectations under

the distribution specified by the subscript that follows. This

leads to a simple learning rule for performing stochastic

steepest ascent in the log probability of the training data:

 𝑤𝑖𝑗 = 휀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

) (60)

where 휀 is a learning rate. Given a randomly selected training

image,𝑣, the binary state, ℎ𝑗 , of each hidden unit, j is set to

1 with probability

 𝑝(ℎ𝑗 = 1|𝑣) = 𝜎(𝑏𝑗 + ∑ 𝑣𝑖𝑖 𝑤𝑖𝑗) (61)

where 𝜎(𝑥) is the logistic sigmoid function 1 (1 + 𝑒(−𝑥))⁄ .𝑣𝑖ℎ𝑗

is then an unbiased sample. Because there are no direct

connections between visible units in an RBM, it is also easy to

get an unbiased sample of the state of a visible unit, given a

hidden vector

 𝑝(𝑣𝑖 = 1|ℎ) = 𝜎(𝑎𝑖 + ∑ ℎ𝑗𝑗 𝑤𝑖𝑗) (62)

Getting an unbiased sample of ⟨𝑣𝑖ℎ𝑗⟩
𝑚𝑜𝑑𝑒𝑙

is much more

difficult. It can be done by starting at any random state of the

visible units and performing alternating Gibbs sampling for a

long time. One iteration of alternating Gibbs sampling consists

of updating all the hidden units in parallel using Eq. (61)

followed by updating all the visible units in parallel using

following Eq. (62). A much faster learning procedure was

proposed in Hinton (2002). This starts by setting the states of

the visible units to a training vector. Then the binary states of

the hidden units are all computed in parallel using Eq. (61).

Once binary states have been chosen for the hidden units, a

“reconstruction” is produced by setting each 𝑣𝑖 to 1 with a

probability given by Eq. (62). The change in a weight is then

given by

 ∆𝑤𝑖𝑗 = 휀 (⟨𝑣𝑖ℎ𝑗⟩
𝑑𝑎𝑡𝑎

− ⟨𝑣𝑖ℎ𝑗⟩
𝑟𝑒𝑐𝑜𝑛

) (63)

A simplified version of the same learning rule that uses the

states of individual units instead of a pairwise products is used

for the biases [178]. This approach is mainly used for pre-

training a neural network in an un-supervised manner to

generate initial weights. One of the most popular deep learning

approaches called Deep Belief Network (DBN) is proposed

based on this approach. Some of the examples of the

applications with RBM and DBN for data encoding, news

clustering, and cyber security are shown, for detail see [51,

179,289].

VII. GENERATIVE ADVERSARIAL NETWORKS (GAN)

At the beginning of this chapter, we started with a quote from

Yann LeCun, “GAN is the best concept proposed in the last ten

years in the field of deep learning (Neural networks)”.

A. Review on GAN

The concept of generative models in machine learning started a

long time before which is used for data modeling with

conditional probability density function. Generally, this type of

model is considered probabilistic model with joint probability

distribution over observation and target (label) values.

However, we did not see big success of this generative model

before. Recently deep learning based generative model

becomes popular and shown enormous success in different

application domains.

Deep learning is a data driven technique that performs better as

the number of input samples increased. Due to this reason,

learning with reusable feature representations from huge

number of un-labels dataset has become an active research area.

We mentioned in the introduction that Computer vision has

different tasks, segmentation, classification, and detection,

which requires large amounts of labelled data. This problem has

been attempted to be solved be generating similar samples with

a generative model.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

24

 Generative Adversarial Networks (GANs) are a deep learning

approach recently developed by Goodfellow in 2014. GANs

offer an alternative approach to maximum likelihood estimation

techniques. GANs are an unsupervised deep learning approach

where two neural entworks compete against each other in a zero

sum game. Each of the two networks gets better at its given task

with each iteration. In the case of the image generation problem

the generator starts with Gaussian noise to generate images and

the discriminator determines how good the generated images

are. This process continues until outputs of the generator

become close to actual input samples. According to the Fig. 40,

it can be considered that Discriminator (D) and Generator (G)

two players playing min-max game with the function of V (D,

G) which can be expressed as follows according to this paper

[180,181].

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷 𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔(𝐷(𝑥))] +

 𝔼𝑧~𝑃𝑑𝑎𝑡𝑎(𝑧)[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))] (64)

In practice, this equation may not provide sufficient gradient for

learning G (which started from random Gaussian noise) at the

early stages. In the early stages D can reject samples because

they are clearly different compared to training samples. In this

case, 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) will be saturated. Instead of training G

to minimize 𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧))) we can train G to maximize

𝑙𝑜𝑔(𝐺(𝑧)) objective function which provides much better

gradients in early stages during learning. However, there were

some limitations of convergence process during training with

the first version. In the beginning state a GAN has some

limitations regarding the following issues:

 The lack of a heuristic cost function (as pixel-wise

approximate means square errors (MSE))

 Unstable to train (sometimes that can be cause of

producing nonsensical outputs)

Research in the area of GANs has been on going with many

improved versions being proposed [181]. GANs are able to

produce photorealistic images for applications such as

visualization of interior or industrial design, shoes, bags, and

clothing items. GANs also so extensive use in the field of game

development. GANs have been used to generate motion in

video as well as generate artificial video [182].GANs have two

different areas of deep learning that they fall into semi-

supervised and unsupervised. Some research in these areas

focuses on topology of the GAN architecture to improve

functionality and the training approach. Deep convolution GAN

(DCGAN) is a convolution based GAN approach proposed in

2015[183].This semi-supervised approach has shown promised

results compared to its unsupervised counterpart. The

regenerated results according the experiments of DCGAN are

shown in the following figures [183]. Fig. 41 shows the output

for generated bedroom images after one training pass through

the dataset. Most of the figures included in this section are

generated through experiments. Theoretically the model could

learn to memorize training examples, but this is experimentally

unlikely as we train with a small learning rate and mini batches

with SGD. We are aware of no prior empirical evidence

demonstrating memorization with SGD and a small learning

rate [183].

Fig. 41. Experimental outputs of bedroom images.

Fig. 42 represents generated bedroom images after five epochs

of training. There appears to be evidence of visual under-fitting

via repeated noise textures across multiple samples such as the

base boards of some of the beds.

Fig. 40. Conceptual diagram for Generative Adversarial Networks (GAN)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

25

Fig. 42. Reconstructed bedroom images using DCGAN

In Fig. 42 the top rows interpolation between a series of 9

random points in Z and show that the space learned has smooth

transitions. In every image the space plausibly looks like a

bedroom. In the 6th row, you see a room without a window

slowly transforming into a room with a giant window. In the

10th row, you see what appears to be a TV slowly being

transformed into a window. The following Fig. 43 shows the

effective application of latent space vectors. Latent space

vectors can be turned into meaning output by first performing

addition and subtraction operations followed by a decode. Fig.

43 shows that a man with glasses minus a man and add a women

which results in a woman with glasses.

Fig. 43. Example of smile arithmetic and arithmetic for wearing glass using

GAN

Fig. 44 shows a “turn” vector was created from four averaged

samples of faces looking left versus looking right. By adding

interpolations along this axis of random samples the pose can

be reliably transformed. There are some interesting applications

that have been proposed for GANs. For example natural indoor

scenes are generated with improved GAN structures. These

GANs learn surface normal and are combined with a Style

GAN by Wang and Gupta[184]. In this implementation, authors

considered style and structure of GAN named (S2-GAN), which

generates a surface normal map. this is an improved version of

a GAN . In 2016 a information-theoretic extension to the GAN

called “InfoGAN” was proposed. An infoGAN can learn with

better representations in a completely unsupervised manner .

The experimental results show that the unsupervised InfoGAN

is competitive with representation learning with the fully

supervised learning approach [185].

In 2016, another new architecture was proposed by Im et al.,

where the recurrent concept is included with the adversarial

network during training [186]. Jun et. al. proposed iGANs

which allowed image manipulation interactively on a natural

image manifold. Image to image translation with conditional

adversarial networks is proposed in 2017 [187]. Another

improved version of GANs named Coupled Generative

Adversarial Network (CoGAN) is a learned joint distribution of

multi-domain images. The exiting approach does not need

tuples of corresponding images in different domains in the

training set [188]. Bidirectional Generative Adversarial

Networks (BiGANs are learned with inverse feature mapping,

and shown that the resulting learned feature representation is

useful for auxiliary supervised discrimination tasks,

competitive with contemporary approaches to un-supervised

and self-supervised feature learning [189].

Fig. 44. Face generation in different angle using GAN

 Recently Google proposed extended versions of GANs called

Boundary Equilibrium Generative Adversarial Networks

(BEGAN) with a simple but robust architecture. BEGAN has a

better training procedure with fast and stable convergence. The

concept of equilibrium helps to balance the power of the

discriminator against generator. In addition, it can balance the

trade-off between image diversity and visual quality [190].

Another similar work is called Wasserstein GAN (WGAN)

algorithm that shows significant benefits over traditional GAN

[191]. WGANs had two major benefits over traditional GANs.

First a WGAN meaningfully correlates the loss metric with the

generator’s convergence and sample quality. Secondly WGANs

have improved stability of the optimization process.

The improved version of WGAN is proposed with a new

clipping technique, which penalizes the normal of the gradient

of the critic with respect to its inputs [192]. There is promising

architecture that has been proposed based on generative models

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

26

where the images are represented with untrained DNN that give

an opportunity for better understanding and visualization of

DNNs [193]. Adversarial examples for generative models

[194]. Energy-based GAN was proposed by Yann LeCun from

Facebook in 2016 [195]. The training process is difficult for

GANs, Manifold Matching GAN (MMGAN) proposed with

better training process which is experimented on three different

datasets and the experimental results clearly demonstrate the

efficacy of MMGAN against other models [196]. GAN for geo-

statistical simulation and inversion with efficient training

approach [197]

Probabilistic GAN (PGAN) which is a new kind of GAN with

a modified objective function. The main idea behind this

method is to integrate a probabilistic model (A Gaussian

Mixture Model) into the GAN framework that supports

likelihood rather than classification [198]. A GAN with

Bayesian Network model [199]. Variational Auto encode is a

popular deep learning approach, which is trained with

Adversarial Variational Bayes (AVB) which helps to establish

a principle connection between VAE and GAN [200]. The f-

GAN which is proposed based on the general feed forward

neural network [201]. Markov model based GAN for texture

synthesis [202]. Another generative model based on doubly

stochastic MCMC method [203]. GAN with multi-Generator

[204]

Is an unsupervised GAN capable of learning on a pixel level

domain adaptation that transforms in the pixel space from one

domain to another domain. This approach provides state-of-the-

art performance against several unsupervised domain

adaptation techniques with a large margin [205]. A new

network is proposed called Schema Network, which is an object

oriented generative physics simulator able to disentangle

multiple causes of events reasoning through causes to achieve

a goal that is learned from dynamics of an environment from

data [206]. There is interesting research that has been

conducted with a GAN that is to Generate Adversarial Text to

Image Synthesis. In this paper, the new deep architecture is

proposed for GAN formulation which can take the text

description of an image and produce realistic images with

respect to the inputs. This is an effective technique for text

based image synthesis using a character level text encoder and

class conditional GAN. GAN is evaluated on bird and flower

dataset first then general text to image which is evaluated on

MS COCO dataset [36].

B. Applications of GAN

This learning algorithm has been applied in different domain of

applications that is discussed in the following sections:

1) GAN for image processing

GANs used for generating photo-realistic image using a super-

resolution approach [207]. GAN for semantic segmentation

with semi and weakly supervised approach [208]. Text

Conditioned Auxiliary Classifier GAN (TAC-GAN) which is

used for generating or synthesizing images from a text

description [209]. Multi-style Generative network (MSG-Net)

which retains the functionality of optimization based

approaches with fast speed. This network matches image styles

at multiple scale and puts the computational burden into

training [210]. Most of the time, vision systems struggle with

rain, snow, and fog. A single image de-raining system is

proposed using a GAN recently [211].

2) GAN for speech and audio processing

An End-to-End Dialogue system using Generative Hierarchical

Neural Network models [212]. In addition, GANs have been

used in the field of speech analysis. Recently, GANs are used

for speech enhancement which is called SEGAN that

incorporates further speech-centric design to improve

performance progressively [213]. GAN for symbolic-domain

and music generation which performs comparably against

Melody RNN [214].

3) GAN for medical information processing

GANs for Medical Imagining and medical information

processing [102], GANs for medical image de-noising with

Wasserstein distance and perceptual loss [215]. GANs can also

be used for segmentation of Brain Tumors with conditional

GANs (cGAN) [216]. A General medical image segmentation

approach is proposed using a GAN called SegAN [217]. Before

the deep learning revolution compressive sensing is one the

hottest topic. However, Deep GAN is used for compresses

sensing that automates MRI [218]. In addition, GANs can also

be used in health record processing, due to the privacy issue the

electronic health record (EHR) is limited to or is not publicly

available like other datasets. GANs are applied for synthetic

EHR data which could mitigate risk [219]. Time series data

generation with Recurrent GAN (RGAN) and Recurrent

Conditional GAN (RCGAN) [220]. LOGAN consists of the

combination of a generative and discriminative model for

detecting the over fitting and recognition inputs. This technique

has been compared against state-of-the-art GAN technique

including GAN, DCGAN, BEGAN and a combination of

DCGAN with a VAE [221].

4) Other applications

A new approach called Bayesian Conditional GAN (BC-GAN)

which can generate samples from deterministic inputs. This is

simply a GAN with Bayesian framework that can handle

supervised, semi-supervised and un-supervised learning

problems [222,223]. In machine learning and deep learning

community, online learning is an important approach. GANs

are used for online learning in which it is being trained for

finding a mixed strategy in a zero-sum game which is named

Checkov GAN 1[224]. Generative moment matching networks

based on statistical hypothesis testing called maximum mean

discrepancy (MMD) [225]. One of the interesting ideas to

replace the discriminator of GAN with two-sample based kernel

MMD, which is called MMD-GAN. This approach

significantly outperforms Generative moment matching

network (GMMN) technique which is an alternative approach

for generative model [226]

Pose estimation using a GAN [227]. Photo editing network

using a GAN [228]. Anomaly detection [229]. DiscoGAN for

learning cross-domain relation with GAN [230]. Single shot

learning with GAN [231]. GAN is used for response generation

and question answering system [232,233]. Last but not leastis

WaveNet a generative model that is used to generate audio

waveform [286].

http://arxiv.org/abs/1702.06832v1
http://arxiv.org/abs/1702.06832v1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

27

VIII. DEEP REINFORCEMENT LEARNING (DRL)

In the previous sections, we have focused on supervised and

unsupervised deep learning approaches including DNN, CNN,

RNN including LSTM and GRU, AE, RBM, GAN etc. These

types of deep learning approaches are used for prediction,

classification, encoding, decoding, data generation, and many

more application domains. However, this section demonstrates

a survey on Deep Reinforcement Learning (DRL) based on the

recently developed methods in this field of RL.

A. Review on DRL

DRL is a learning approach which learns to act with general

sense from unknown real environment (For details please read

the following article [234]). RL can be applied in a different

scope of field including fundamental Sciences for decision

making, Machine learning from computer science point of

view, in the field of engineering and mathematics, optimal

control, robotics control, power station control, wind turbines,

and Neuroscience the reward strategy is widely studied in last

couple of decades. It is also applied in economic utility or game

theory for making better decisions and for investment choices.

The psychological concept of classical conditioning is how

animals learn. Reinforcement learning is a technique for what

to do and how-to match a situation to an action. Reinforcement

learning is different from supervised learning technique and

other kinds of learning approaches studies recently including

traditional machine learning, statistical pattern recognition, and

ANN.

Fig. 45. Conceptual diagram for RL system.

Alike the general supervised and unsupervised machine

learning RL is defined not by characterizing learning methods,

but by characterizing a learning problem. However, the recent

success of DL has had huge impact on the success of DRL

which is known as DRL. According to the learning strategy, the

RL technique is learned through observation. For observing the

environment, the promising DL techniques include CNN, RNN,

LSTM, and GRU are used depending upon the observation

space. As DL techniques encode data efficiently therefore the

following step of action is performed more accurately.

According to the action, the agent receives an appropriate

reward respectively. As a result, the entire RL approach

becomes more efficient to learn and interact in the environment

with better performance.

However, the history of the modern DRL revolution began

recently from Google Deep Mind in 2013 with Atari games

with DRL. Where the agent was evaluated on more than fifty

different games. In which the DRL based approaches perform

better against the human expert in almost all of the games. In

this case, the environment is observed on video frames which

are processed using a CNN [235,236]. The success of DRL

approaches depend on the level of difficulty of the task attempt

to be solved. After a huge success of Alpha-Go and Atari from

Google Deep mind, they proposed reinforcement learning

environment based on StarCraft II in 2017, which is called

SC2LE (StarCraft II Learning Environment) [237]. The SC2LE

is a game with multi-agent with multiple player’s interactions.

This proposed approach has a large action space involving

selection and control of hundreds of units. It contains many

states to observe from raw feature space and it uses strategies

over thousands of steps. The open source python based

StarCraft II game engine has been provided free in online.

B. Q- Learning

There are some fundamental strategies which are essential to

know for working with DRL. First, the RL learning approach

has a function that calculates the Quality of state-action

combination which is called Q-Learning (Q-function).

𝑄: 𝑆 × 𝐴 → ℝ

The Q-function which is learned from the observation states 𝑆,

action of the states 𝐴 and reward ℝ. This is an iterative approach

to update the values. Q-learning is defined as a model-free

reinforcement learning approach which is used to find an

optimal action-selection policy for any given (finite) Markov

Decision Process (MDP). MDP is a mathematical framework

for modeling decision using state, action and rewards. Q-

learning only needs to know about the states available and what

are the possible actions in each state. Another improved version

of Q-Learning known as Bi-directional Q-Learning. In this

article, the Q-Learning is discussed, for details on bi-directional

Q-Learning please see [238].

At each step s, choose the action which maximize the following

function Q (s, a)

- Q is an estimated utility function – it tells us how good

an action is given in a certain state

- r (s, a) immediate reward for making an action best

utility (Q) for the resulting state

This can be formulated with recursive definition as follows:

 𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′)) (65)

This equation is called Bellman’s equation, which is the core

equation for RL. Here 𝑟(𝑠, 𝑎) is the immediate reward, 𝛾 is the

relative value of delay vs. immediate rewards [0, 1] 𝑠′ is the

new state after action 𝑎. The 𝑎 and 𝑎′ are an action in sate 𝑠

and 𝑠′ respectively. The action is selected based on the

following equation:

 𝜋(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) (66)

In each state, a value is assigned called a Q-value. When we

visit a state and we receive a reward accordingly. We use the

reward to update the estimated value for that state. As the

reward is stochastic, as a result we need to visit the states many

times. In addition, it is not guaranteed that we will get same

reward (Rt) in another episode. The summation of the future

rewards in episodic tasks and environments are unpredictable,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

28

further in the future, we go further with the reward diversely as

expressed.

 Gt = Rt+1 + Rt+2+ Rt+3 + ……. …. + RT (67)

The sum of discounted future rewards in both cases are some

factor as scalar.

 Gt = Rt+1 + 2 Rt+2+ 3 Rt+3 + ……. …. + TRT (68)

Here is a constant. The more we are in the future, the less we

take the reward in to account

Properties of Q-learning:

 Convergence of Q-function: approximation will be

converged to the true Q-function, but it must visit

possible state-action pair infinitely many times.

 The state table size can be vary depending on the

observation space and complexity.

 Unseen values are not considered during observation.

The way to fix these problems is to use a neural network

(particularly DNN) as an approximation instead of the state

table. The inputs of DNN are the state and action and the

outputs are numbers between 0 and 1 that represent the utility

encoding the states and actions properly. That is the place where

the deep learning approaches contribute for making better

decisions with respective to the state information. Most of the

cases for observing the environment, we use several acquisition

devices including camera or other sensing devices for observing

the learning environment. For example: if you observed the

setup for the challenge of Alpha-Go then it can be seen that the

environment, action, and reward are learned based on the pixel

values (pixel in action). For details see [235,236].

Algorithm V: Q-Learning

Initialization:

For each state-action pair (𝑠, 𝑎)

initialize the table entry �̂�(𝑠, 𝑎) to zero

Steps:

1.Observed the current state s

2. REPEAT:

- Select an action a and execute it

- Received immediate reward r

- Observe the new state 𝑠′

- Update the table entry for �̂�(𝑠, 𝑎) as follows:

�̂�(𝑠, 𝑎) = 𝑟 + 𝛾 𝑚𝑎𝑥𝑎′(𝑄(𝑠′, 𝑎′))

- 𝑠 = 𝑠′

However, it is difficult to develop an agent which can interact

or perform well in any observation environment. Therefore,

most of the researchers in the field select their action space or

environment before training the agent for that environment. The

benchmark concept in this case is little bit different compared

to supervised or unsupervised deep learning approach. Due to

the variety of environments, the benchmark depends on what

level of difficulty the environment has been considered

compared to the previous or exiting researches? The difficulties

depend on the different parameters, number of agents, way of

interaction between the agents, number of players and so on.

Recently, another good learning approach has been proposed

for DRL [234]. There are many papers published with different

networks of DRL including Deep Q-Networks (DQN), Double

DQN, Asynchronous methods, policy optimization strategy

(including deterministic policy gradient, deep deterministic

policy gradient, guided policy search, trust region policy

optimization, combining policy gradient and Q-learning) are

proposed [234]. Policy Gradient (DAGGER) Super human GO

using supervised learning with policy gradient and Monte Carlo

tree search with value function [239]. Robotics manipulation

using guided policy search [240]. DRL for 3D games using

policy gradients [241].

C. Recent trends of DRL with applications

There is a survey published recently, where basic RL, DRL

DQN, trust region policy optimization, and asynchronous

advantage actor-critic are proposed. This paper also discusses

the advantages of deep learning and focuses on visual

understanding via RL and the current trend of research [243]. A

network cohesion constrained based on online RL techniques is

proposed for health care on mobile devices called mHealth.

This system helps similar users to share information efficiently

to improve and convert the limited user information into better

learned policies [244]. Similar work with the group-driven RL

is proposed for health care on mobile device for personalized

mHealth Intervention. In this work, K-means clustering is

applied for grouping the people and finally shared with RL

policy for each group [245]. Optimal policy learning is a

challenging task with RL for an agent. Option-Observation

Initiation sets (OOIs) allow agents to learn optimal policies in

challenging task of POMDPs which are learned faster than

RNN [246]. 3D Bin Packing Problem (BPP) is proposed with

DRL. The main objective is to place the number of cuboid-

shaped item that can minimize the surface area of the bin [247].

The import component of DRL is the reward which is determine

based on the observation and the action of the agent. The real-

world reward function is not perfect at all times. Due to the

sensor error the agent may get maximum reward whereas the

actual reward should be smaller. This paper proposed a

formulation based on generalized Markov Decision Problem

(MDP) called Corrupt Reward MDP [248]. The truest region

optimization based deep RL is proposed using recently

developed Kronecker-factored approximation to the curvature

(K-FAC) [249]. In addition, there is some research that has been

conducted in the evaluation of physics experiments using the

deep learning approach. This experiment focus agent to learn

basic properties such as mass and cohesion of the objects in the

interactive simulation environment [250].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

29

Recently Fuzzy RL policies have been proposed that is suitable

for continuous state and action space [251]. The important

investigation and discussion are made for hyper-parameters in

policy gradient for continuous control, general variance of

 algorithm. This paper also provides a guideline for reporting

results and comparison against baseline methods [252]. Deep

RL is also applied for high precision assembly tasks [253]. The

Bellman equation is one of the main function of RL technique,

a function approximation is proposed which ensures that the

Bellman Optimality Equation always holds. Then the function

is estimated to maximize the likelihood of the observed motion

[254]. DRL based hierarchical system is used for could resource

allocation and power management in could computing system

[255]. A novel Attention-aware Face Hallucination (Attention-

FC) is proposed where Deep RL is used for enhancing the

quality of image on single patch for images which is applied on

face images [256].

IX. TRANSFER LEARNING

A. What is transfer learning?

A good way to explain transfer learning is to look at the student

teacher relationship. A teacher offers a course after gathering

details knowledge regarding that subject. The information will

be conveyed through a series of lectures over time. This can be

considered that the teacher (expert) is transferring information

(knowledge) to the students (learner). The same thing happens

in case of deep learning, a network is trained with a big amount

data and during the training the model learns the weights and

bias. These weights can be transferred to other networks for

testing or retraining a similar new model. The network can start

with pre trained weights instead of training from scratch.

B. What is a pre-trained models?

A pre-trained model is a model which is already trained on the

same domains as the intended domain. For example for an

image recognition task an Inception model already trained on

ImageNet can be downloaded. The Inception model can then be

used for a different recognition task, and instead of training it

from scratch the weights can be left as is with some learned

features. This method of training is useful when there is a lack

of sample data. There are a lot of pre-trained models available

(including VGG, ResNet, and Inception Net on different

datasets) in model-zoo from the following link:

https://github.com/BVLC/caffe/wiki/Model-Zoo.

C. Why will you use pre-trained models?

There are a lot of reasons for using pre-trained models. Firstly

it is requires a lot of expensive computation power to train big

models on big datasets. Secondly it can take up to multiple

weeks to train big models. Training new models with pre

trained weights can speed up convergence as well as help the

network generalization.

D. How will you use pre-trained models?

We need to consider the following criterions with respective

application domains and size of the dataset when using the pre-

trained weights which is shown in Table III.

E. Working with inference

Research groups working specifically on inference applications

look into optimization approaches that include model

compression. Model compression is important in the realm of

Fig. 46. Conceptual diagram for transfer learning: pretrained on ImageNet and transfer learning is used for retraining
on PASAL dataset.

TABLE III. CRITERIONS NEED TO BE CONSIDERED FOR TRANSFER

LEARNING.

 New dataset but

small

New dataset but large

Pre-trained

model on

similar but

new dataset

Freeze weights and

train linear classifier

from top level

features

Fine-tune all the layers

(pre-train for faster

convergence and better

generalization)

Pre-trained

model on

different
but new

dataset

Freeze weights and

train linear classifier

from non-top-level

features

Fine-tune all the layers

(pre-train for enhanced

convergence speed)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

30

mobile devices or special purpose hardware because it makes

models more energy efficient as well as faster.

F. Myth about Deep Learning

There is a myth; do you need a million labelled samples for

training a deep learning model? The answer is yes but in most

cases the transfer leaning approach is used to train deep leaning

approaches without having large amounts of label data. For

example: the following Fig. 46 demonstrates the strategy for the

transfer learning approach in details. Here the primary model

has been trained with large amount of labeled data which is

ImageNet and then the weights are used to train with the

PASCAL dataset. The actual reality is:

 Possible to learn useful representations from unlabeled

data.

 Transfer learning can help learned representation from

the related task [257].

We can take a trained network for a different domain which can

be adapted for any other domain for the target task [258, 589].

First training a network with a close domain for which it is easy

to get labeled data using standard back propagation for

example: ImageNet classification, pseudo classes from

augmented data. Then cut of the top layers of network and

replace with supervised objective for target domain. Finally,

tune the network using back propagation with labels for target

domain until validation loss starts to increase [258, 589]. There

are some survey papers and books that are published on transfer

learning [260,261]. Self-taught learning with transfer learning

[262]. Boosting approach for transfer learning [263].

X. ENERGY EFFICIENT APPROACHES AND HARDWIRES FOR DL

A. Overview

DNNs have been successfully applied and achieved better

recognition accuracies in different application domains such as

Computer vision, speech processing, natural language

processing, big data problem and many more. However, most

of the cases the training is being executed on Graphic

Processing Units (GPU) for dealing with big volumes of data

which is expensive in terms of power.

Recently researchers have been training and testing with deeper

and wider networks to achieve even better classification

accuracy to achieve human or beyond human level recognition

accuracy in some cases. While the size of the neural network is

increasing, it becomes more powerful and provides better

classification accuracy. However, the storage consumption,

memory bandwidth and computational cost are increasing

exponentially. On the other hand, these types of massive scale

implementation with large numbers of network parameters is

not suitable for low power implementation, unmanned aerial

vehicle (UAV), different medical devices, low memory system

such as mobile devices, Field Programmable Gate Array

(FPGA) and so on.

There is much research going on to develop better network

structures or networks with lower computation cost, less

number of parameters for low-power and low-memory systems

without lowering classification accuracy. There are two ways to

design efficient deep network structure:

 The first approach is to optimize the internal

operational cost with an efficient network structure,

 Second design a network with low precision

operations or a hardware efficient network.

The internal operations and parameters of a network structure

can be reduced by using low dimensional convolution filters for

convolution layers. [260].

There are lot of benefit of this approach, first the convolutional

with rectification operations makes the decision more

discriminative. Second, the main benefit of this approach is to

reduce the number of computation parameters drastically. For

example: if one layer has 5x5 dimensional filters which can be

replaced with two 3x3 dimensional filters (without pooling

layer in between then) for better feature learning; three 3x3

dimensional filter can be used as a replacement of 7x7

dimensional filters and so on. Benefits of using lower

dimensional filter is that assuming both the present

convolutional layer has C channels, for three layers for 3x3

filter the total number of parameters are weights: 3*(3*3*C*C)

=27𝐶2weights, whereas in case of 7x7 filters, the total number

of parameters are (7*7*C*C) =49𝐶2 , which is almost double

compared to the three 3x3 filter parameters. Moreover,

placement of layers such as convolutional, pooling, drop-out in

the network in different intervals has an impact on overall

classification accuracy. There are some strategies that are

mentioned to optimize the network architecture recently to

design efficient deep learning models[89] [264]. According to

the paper [89], Strategy 1: Replace 3x3 filter with 1x1 filters.

The main reason to use lower dimension filter to reduce the

overall number of parameter. By replacing 3x3 filters with 1x1

can be reduce 9x number of parameters.

Strategy 2: Decrease the number of input channels to 3x3

filters. For a layer, the size of the output feature maps are

calculated which is related to the network parameters

using
𝑁−𝐹

𝑆
+ 1, where N is input map’s size, F is filter size, S is

for strides. To reduce the number of parameters, it is not only

enough to reduce the size of the filters but also it requires to

control number of input channels or feature dimension.

Strategy 3: Down-sample late in the network so that

convolution layers have activation maps: The outputs of present

convolution layers can be at least 1x1 or often larger than 1x1.

The output width and height can be controlled by some

criterions: (1) the size of the input sample (e.g. 256x256) and

(2) Choosing the post down sample layer. Most commonly

pooling layers are such as average or max pooling layer are

used, there is an alternative sub-sampling layer with

convolution (3x3 filters) and stride with 2. If most of the earlier

layers have larger stride, then most of layers will have small

numbers of activation maps. On the other hand, if most of the

layers have a stride of 1, and the stride larger than one applied

in the end of the network, then many layers of network will have

large activation maps. One intuition is the larger activation

maps (due to delayed down-sampling) can lead to higher

classification accuracy [89]. This intuition has been

investigated by K. He and H. Sun applied delayed down-

sampling into four different architecture of CNNs, and it is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

31

observed that each case delayed down-sampling led to higher

classification accuracy [265].

B. Binary connect (BC) or ternary connect(TC) Neural

Networks

The computation cost can be reduced drastically with low

precision of multiplication and few multiplications with drop

connection [266, 267]. These papers also introduced on Binary

Connect Neural Networks (BNN) Ternary Connect Neural

Networks (TNN). Generally, multiplication of a real-valued

weight by a real-valued activation (in the forward propagations)

and gradient calculation (in the backward propagations) are the

main operations of deep neural networks. Binary connect or

BNN is a technique that eliminates the multiplication

operations by converting the weights used in the forward

propagation to be binary, i.e. constrained to only two values (0

and 1 or -1 and 1). As a result, the multiplication operations

can be performed by simple additions (and subtractions) and

makes the training process faster. There are two ways to convert

real values to its corresponding binary values such as

deterministic and stochastic. In case of deterministic technique,

straightforward thresholding technique is applied on weights.

An alternative way to do that is stochastic approach where a

matrix is converted to binary based on probability where the

“hard sigmoid” function is used because it is computationally

inexpensive. The experimental result shows significantly good

recognition accuracy [268,269,270]. There are several

advantages of BNN as follows:

 It is observed that the binary multiplication on GPU is

almost seven times faster than traditional matrix

multiplication on GPU

 In forward pass, BNNs drastically reduce memory size

and accesses, and replace most arithmetic operation with

bit-wise operations, which lead great increase of power

efficiency

 Binarized kernels can be used in CNNs which can reduce

around 60% complexity of dedicated hardware.

 It is also observed that memory accesses typically

consume more energy compared to arithmetic operation

and memory access cost increases with memory size.

BNNs are beneficial with respect to both aspects.

There are some other techniques that have been proposed in last

few years [271,272,273]. Another power efficient and hardware

friendly network structure has been proposed for a CNN with

XNOR operations. In XNOR based CNN implementations,

both the filters and input to the convolution layer is binary. This

result about 58x faster convolutional operations and 32x

memory saving. In the same paper, Binary-Weight-Networks

was proposed which saved around 32x memory saving. That

makes it possible to implement state-of-the-art networks on

CPU for real time use instead of GPU. These networks are

tested on the ImageNet dataset and provide only 2.9% less

classification accuracy than full-precision AlexNet (in top-1%

measure). This network requires less power and computation

time. This could make it possible to accelerate the training

process of deep neural network dramatically for specialized

hardware implementation [274]. An efficient quantization

approaches has proposed for different RNN approaches

including ConvLSTM with BC, TC, and Quaternary Connect

(QC) networks [299]. For the first time, Energy Efficient Deep

Neural Network (EEDN) architecture was proposed for

neuromorphic system in 2016. In addition, they released a deep

learning framework called EEDN, which provides close

accuracy to the state-of-the art accuracy almost all the popular

benchmarks except ImageNet dataset [275,276]. Recently, a

paper has published on deep versus wide CNN on IBM’s

TrueNorth system [298].

XI. HARDWARE FOR DL

Along with the algorithmic development of DL approaches,

there are many hardware architectures have been proposed in

past few years. The details about present trends of hardware for

deep learning have been published recently [277]. MIT

proposed “Eyeriss” as a hardware for deep convolutional neural

networks (DCNN) [278]. There is another architecture for

machine learning called “Dadiannao” [279]. In 2016, an

efficient hardware that works for inference was released and

proposed by Stanford University called Efficient Inference

Engine (EIE) [281]. Google developed a hardware named

Tensor Processing Unit (TPU) for deep learning and was

released in 2017[280]. IBM released a neuromorphic system

called “TrueNorth” in 2015 [275].

Deep learning approaches are not limited to the HPC platform,

there are a lot of application already developed which run on

mobile devices. Mobile platforms provide data that is relevant

to everyday activities of the user, which can make a mobile

system more efficient and robust by retraining the system with

collected data. There is some research ongoing to develop

hardware friendly algorithms for DL [282,283,284].

XII. FRAMEWORKS AND SDK

Most of the time people use different deep learning frameworks

and Standard Development Kits (SDKs) for implementing deep

learning approaches which are listed below:

A. Frameworks

 Tensorflow : https://www.tensorflow.org/

 Caffe : http://caffe.berkeleyvision.org/

 KERAS : https://keras.io/

 Theano : http://deeplearning.net/software/theano/

 Torch : http://torch.ch/

 PyTorch : http://pytorch.org/

 Lasagne : https://lasagne.readthedocs.io/en/latest/

 DL4J (DeepLearning4J) : https://deeplearning4j.org/

 Chainer : http://chainer.org/

 DIGITS : https://developer.nvidia.com/digits

 CNTK (Microsoft)

: https://github.com/Microsoft/CNTK

 MatConvNet : http://www.vlfeat.org/matconvnet/

 MINERVA : https://github.com/dmlc/minerva

 MXNET : https://github.com/dmlc/mxnet

 OpenDeep : http://www.opendeep.org/

 PuRine : https://github.com/purine/purine2

 PyLerarn2

: http://deeplearning.net/software/pylearn2/

https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
https://keras.io/
http://deeplearning.net/software/theano/
http://torch.ch/
https://lasagne.readthedocs.io/en/latest/
https://deeplearning4j.org/
http://chainer.org/
https://developer.nvidia.com/digits
https://github.com/Microsoft/CNTK
http://www.vlfeat.org/matconvnet/
https://github.com/dmlc/minerva
https://github.com/dmlc/mxnet
http://www.opendeep.org/
https://github.com/purine/purine2
http://deeplearning.net/software/pylearn2/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

32

 TensorLayer:

https://github.com/zsdonghao/tensorlayer

 LBANN : https://github.com/LLNL/lbann

B. SDKs

 cuDNN : https://developer.nvidia.com/cudnn

 TensorRT : https://developer.nvidia.com/tensorrt

 DeepStreamSDK

: https://developer.nvidia.com/deepstream-sdk

 cuBLAS : https://developer.nvidia.com/cublas

 cuSPARSE : http://docs.nvidia.com/cuda/cusparse/

 NCCL

: https://devblogs.nvidia.com/parallelforall/fast-multi-

gpu-collectives-nccl/

XIII. BENCHMARK DATABASES

Here is the list of benchmark datasets that are used often to

evaluate deep learning approaches in different domains of

application:

A. Image classification or detection or segmentation

List of datasets are used in the field of image processing and

computer vision:

 MNIST : http://yann.lecun.com/exdb/mnist/

 CIFAR 10/100

: https://www.cs.toronto.edu/~kriz/cifar.html

 SVHN/ SVHN2

: http://ufldl.stanford.edu/housenumbers/

 CalTech 101/256

: http://www.vision.caltech.edu/Image_Datasets/Calt

ech101/

 STL-10 : https://cs.stanford.edu/~acoates/stl10/

 NORB : http://www.cs.nyu.edu/~ylclab/data/norb-

v1.0/

 SUN-dataset

: http://groups.csail.mit.edu/vision/SUN/

 ImageNet : http://www.image-net.org/

 National Data Science Bowl Competition

: http://www.datasciencebowl.com/

 COIL 20/100

: http://www.cs.columbia.edu/CAVE/software/softlib

/coil-

20.php http://www.cs.columbia.edu/CAVE/software/

softlib/coil-100.php

 MS COCO DATASET : http://mscoco.org/

 MIT-67 scene dataset

: http://web.mit.edu/torralba/www/indoor.html

 Caltech-UCSD Birds-200 dataset

:http://www.vision.caltech.edu/visipedia/CUB-200-

2011.html

 Pascal VOC 2007 dataset

: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/

 H3D Human Attributes dataset

: https://www2.eecs.berkeley.edu/Research/Projects/

CS/vision/shape/poselets/

 Face recognition dataset: http://vis-

www.cs.umass.edu/lfw/

 For more data-set visit : https://www.kaggle.com/

 http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedb

ase.htm

 Recently Introduced Datasets in Sept. 2016:

 Google Open Images (~9M images) –

https://github.com/openimages/dataset

 Youtube-8M (8M videos:

https://research.google.com/youtube8m/

B. Text classification

 Reuters-21578 Text Categorization Collection :

http://kdd.ics.uci.edu/databases/reuters21578/reuters2

1578.html

 Sentiment analysis from Stanford :

http://ai.stanford.edu/~amaas/data/sentiment/

 Movie sentiment analysis from cornel :

http://www.cs.cornell.edu/people/pabo/movie-

review-data/

C. Language modeling

 free eBooks: https://www.gutenberg.org/

 Brown and stanford corpus on present americal

english:

o https://en.wikipedia.org/wiki/Brown_Corpus

 Google 1Billion word corpus:

https://github.com/ciprian-chelba/1-billion-word-

language-modeling-benchmark

D. Image Captioning

 Flickr 8k:

http://nlp.cs.illinois.edu/HockenmaierGroup/8k-

pictures.html

 Flickr 30k :

 Common Objects in Context (COCO) :

http://cocodataset.org/#overview

 http://sidgan.me/technical/2016/01/09/Exploring-

Datasets

E. Machine translation

 Pairs of sentences in English and French:

https://www.isi.edu/natural-

language/download/hansard/

 European Parliament Proceedings parallel Corpus

196-2011 : http://www.statmt.org/europarl/

 The statistics for machine translation:

http://www.statmt.org/

F. Question Answering

 Stanford Question Answering Dataset (SQuAD):

https://rajpurkar.github.io/SQuAD-explorer/

https://github.com/zsdonghao/tensorlayer
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/deepstream-sdk
https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cusparse/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
https://cs.stanford.edu/~acoates/stl10/
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
http://www.cs.nyu.edu/~ylclab/data/norb-v1.0/
http://groups.csail.mit.edu/vision/SUN/
http://www.image-net.org/
http://www.datasciencebowl.com/
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://mscoco.org/
http://web.mit.edu/torralba/www/indoor.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
http://vis-www.cs.umass.edu/lfw/
http://vis-www.cs.umass.edu/lfw/
https://www.kaggle.com/
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
https://github.com/openimages/dataset
https://research.google.com/youtube8m/
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
http://ai.stanford.edu/~amaas/data/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.gutenberg.org/
https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
https://github.com/ciprian-chelba/1-billion-word-language-modeling-benchmark
http://cocodataset.org/#overview
http://sidgan.me/technical/2016/01/09/Exploring-Datasets
http://sidgan.me/technical/2016/01/09/Exploring-Datasets
https://www.isi.edu/natural-language/download/hansard/
https://www.isi.edu/natural-language/download/hansard/
http://www.statmt.org/europarl/
http://www.statmt.org/
https://rajpurkar.github.io/SQuAD-explorer/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

33

 Dataset from DeepMind :

https://github.com/deepmind/rc-data

 Amazon dataset:

http://jmcauley.ucsd.edu/data/amazon/qa/

 http://trec.nist.gov/data/qamain...

 http://www.ark.cs.cmu.edu/QA-data/

 http://webscope.sandbox.yahoo.co...

 http://blog.stackoverflow.com/20..

G. Speech Recognition

 TIMIT : https://catalog.ldc.upenn.edu/LDC93S1

 Voxforge: http://voxforge.org/

 Open Speech and Language Resources:

http://www.openslr.org/12/

H. Document summarization

 https://archive.ics.uci.edu/ml/datasets/Legal+Case+

Reports

 http://www-

nlpir.nist.gov/related_projects/tipster_summac/cmp_

lg.html

 https://catalog.ldc.upenn.edu/LDC2002T31

I. Sentiment analysis:

 IMDB dataset: http://www.imdb.com/

In addition, there is another alternative solution in data

programming that labels subsets of data using weak supervision

strategies or domain heuristics as labeling functions even if they

are noisy and may conflict samples [87].

XIV. JOURNAL AND CONFERENCES

In general, researchers publish their primary version of research

on the ArXiv (https://arxiv.org/). Most of the conferences have

been accepting papers on Deep learning and its related field.

Popular conferences are listed below:

A. Conferences

 Neural Information Processing System (NIPS)

 International Conference on Learning Representation

(ICLR): What are you doing for Deep Learning?

 International Conference on Machine

Learning(ICML)

 Computer Vision and Pattern Recognition (CVPR):

What are you doing with Deep Learning?

 International Conference on Computer Vision

(ICCV)

 European Conference on Computer Vision (ECCV)

 British Machine Vision Conference (BMVC)

B. Journal

 Journal of Machine Learning Research (JMLR)

 IEEE Transaction of Neural Network and Learning

System (

 IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI)

 Computer Vision and Image Understanding (CVIU)

 Pattern Recognition Letter

 Neural Computing and Application

C. Tutorials on deep learning

 http://deeplearning.net/tutorial/

 http://deeplearning.stanford.edu/tutorial/

 http://deeplearning.net/tutorial/deeplearning.pdf

 Courses on Reinforcement Learning:

http://rll.berkeley.edu/deeprlcourse/

D. Books on deep learning

 https://github.com/HFTrader/DeepLearningBookhttp

s://github.com/janishar/mit-deep-learning-book-pdf

 http://www.deeplearningbook.org/

XV. CONCLUSIONS AND FUTURE WORKS

In this report, we have discussed on the revolutions of deep

learning approaches with its applications over past few years.

We have reviewed different state-of-the-art deep learning

models in different categories of learning approaches including

supervised, un-supervised and Reinforcement Learning (RL)

and their applications in different domains. In addition, we have

explained in detail about different supervised deep learning

techniques including DNN, CNN, and RNN. We have also

reviewed un-supervised deep learning techniques which

includes AE, RBM, and GAN. In the same section, we have

considered and explained unsupervised learning techniques

which are proposed based on LSTM and RL. In section 8, we

have presented the survey on Deep Reinforcement Learning

(DRL) with the fundamental learning technique called Q-

Learning. Furthermore, we have conducted a survey on energy

efficient deep learning approaches, transfer learning with DL,

and hardware development trends of DL. Moreover, we have

discussed some DL frameworks and benchmark datasets, which

are often used for the implementation and evaluation of deep

learning approaches. Finally, we have included the relevant

journals and conferences, where DL community has been

publishing their valuable research articles.

REFERENCES

[1] Jump, Schmidhuber, J. (2015). "Deep Learning in Neural

Networks: An Overview". Neural Networks. 61: 85–117.

[2] Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015). "Deep

Learning". Nature. 521: 436–444. doi:10.1038/nature14539.

[3] Bengio, Y.; Courville, A.; Vincent, P. (2013). "Representation

Learning: A Review and New Perspectives". IEEE Transactions

on Pattern Analysis and Machine Intelligence. 35 (8): 1798–1828

https://github.com/deepmind/rc-data
http://jmcauley.ucsd.edu/data/amazon/qa/
http://trec.nist.gov/data/qamain.html
http://www.ark.cs.cmu.edu/QA-data/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=l
http://blog.stackoverflow.com/2009/06/stack-overflow-creative-commons-data-dump/
https://catalog.ldc.upenn.edu/LDC93S1
http://voxforge.org/
http://www.openslr.org/12/
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
https://archive.ics.uci.edu/ml/datasets/Legal+Case+Reports
http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
http://www-nlpir.nist.gov/related_projects/tipster_summac/cmp_lg.html
https://catalog.ldc.upenn.edu/LDC2002T31
http://www.imdb.com/
https://arxiv.org/
https://www.computer.org/web/tpami
https://www.computer.org/web/tpami
http://deeplearning.net/tutorial/
http://deeplearning.stanford.edu/tutorial/
http://deeplearning.net/tutorial/deeplearning.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

34

[4] Bengio, Yoshua. "Learning deep architectures for AI." Foundations and

trends® in Machine Learning 2.1 (2009): 1-127.
[5] Mnih, Volodymyr, et al. "Human-level control through deep

reinforcement learning." Nature 518.7540 (2015): 529-533.

[6] Mnih, Volodymyr, et al. "Playing Atari with deep reinforcement
learning." arXiv preprint arXiv:1312.5602 (2013).

[7] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification

with deep convolutional neural networks. In NIPS, pp. 1106–1114, 2012.
[8] Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional

networks. CoRR, abs/1311.2901, 2013. Published in Proc. ECCV, 2014.

[9] Simonyan, Karen, and Andrew Zisserman. " deep convolutional networks
for large-scale image recognition." arXiv preprint

arXiv:1409.1556(2014).

[10] Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015.

[11] He, Kaiming, et al. "Deep residual learning for image

recognition." Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016.

[12] Canziani, Alfredo, Adam Paszke, and Eugenio Culurciello. "An analysis

of deep neural network models for practical applications." arXiv preprint
arXiv:1605.07678 (2016).

[13] G. Zweig, “Classification and recognition with direct segment models,”

in Proc. ICASSP. IEEE, 2012, pp. 4161– 4164.
[14] Y. He and E. Fosler-Lussier, “Efficient segmental conditional random

fields for phone recognition,” in Proc. INTERSPEECH, 2012, pp. 1898–

1901.
[15] O. Abdel-Hamid, L. Deng, D. Yu, and H. Jiang, “Deep segmental neural

networks for speech recognition.” in Proc. INTERSPEECH, 2013, pp.
1849–1853.

[16] H. Tang, W. Wang, K. Gimpel, and K. Livescu, “Discriminative

segmental cascades for feature-rich phone recognition,” in Proc. ASRU,
2015.

[17] Song, William, and Jim Cai. "End-to-end deep neural network for

automatic speech recognition." (2015): 1. (Errors: 21.1)
[18] Deng, Li, Ossama Abdel-Hamid, and Dong Yu. "A deep convolutional

neural network using heterogeneous pooling for trading acoustic

invariance with phonetic confusion." Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE,

2013.

[19] Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Proc. ICASSP. IEEE, 2013, pp. 6645–

6649.

[20] Zhang, Ying, et al. "Towards end-to-end speech recognition with deep
convolutional neural networks." arXiv preprint arXiv:1701.02720 (2017).

[21] Deng, Li, and John Platt. "Ensemble deep learning for speech

recognition." (2014).
[22] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,

“Attention-based models for speech recognition,” in Advances in Neural

Information Processing Systems, 2015, pp. 577–585.
[23] Lu, Liang, et al. "Segmental recurrent neural networks for end-to-end

speech recognition." arXiv preprint arXiv:1603.00223 (2016).

[24] Van Essen, Brian, et al. "LBANN: Livermore big artificial neural network
HPC toolkit." Proceedings of the Workshop on Machine Learning in

High-Performance Computing Environments. ACM, 2015.

[25] Chen, Xue-Wen, and Xiaotong Lin . “Big Data Deep Learning:
Challenges and Perspectives” IEEE Access in date of publication May 16,

2014.

[26] Zhou, Zhi-Hua, et al. "Big data opportunities and challenges: Discussions
from data analytics perspectives [discussion forum]." IEEE

Computational Intelligence Magazine 9.4 (2014): 62-74.

[27] Najafabadi, Maryam M., et al. "Deep learning applications and challenges
in big data analytics." Journal of Big Data 2.1 (2015): 1.

[28] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural

information processing systems. 2014.
[29] Kaiser, Lukasz, et al. "One Model To Learn Them All." arXiv preprint

arXiv:1706.05137 (2017).

[30] Collobert, Ronan, and Jason Weston. "A unified architecture for natural
language processing: Deep neural networks with multitask

learning." Proceedings of the 25th international conference on Machine

learning. ACM, 2008.
[31] Johnson, Melvin, et al. "Google's multilingual neural machine translation

system: enabling zero-shot translation." arXiv preprint

arXiv:1611.04558 (2016).

[32] Argyriou, Andreas, Theodoros Evgeniou, and Massimiliano Pontil.

"Multi-task feature learning." Advances in neural information processing
systems. 2007.

[33] Singh, Karamjit, et al. "Deep Convolutional Neural Networks for Pairwise

Causality." arXiv preprint arXiv:1701.00597 (2017).
[34] Yu, Haonan, et al. "Video paragraph captioning using hierarchical

recurrent neural networks." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016.
[35] Kim, Taeksoo, et al. "Learning to discover cross-domain relations with

generative adversarial networks." arXiv preprint

arXiv:1703.05192 (2017).
[36] Reed, Scott, et al. "Generative adversarial text to image synthesis." arXiv

preprint arXiv:1605.05396 (2016).

[37] Deng, Li, and Dong Yu. "Deep learning: methods and
applications." Foundations and Trends® in Signal Processing 7.3–4

(2014): 197-387.

[38] Gu, Jiuxiang, et al. "Recent advances in convolutional neural
networks." arXiv preprint arXiv:1512.07108 (2015).

[39] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A

tutorial and survey." arXiv preprint arXiv:1703.09039 (2017).
[40] Li, Yuxi. "Deep reinforcement learning: An overview." arXiv preprint

arXiv:1701.07274 (2017).

[41] Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning
in robotics: A survey." The International Journal of Robotics

Research 32.11 (2013): 1238-1274.

[42] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE
Transactions on knowledge and data engineering22.10 (2010): 1345-

1359.
[43] Schuman, Catherine D., et al. "A Survey of Neuromorphic Computing and

Neural Networks in Hardware." arXiv preprint arXiv:1705.06963 (2017).

[44] McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas
immanent in nervous activity." The bulletin of mathematical

biophysics 5.4 (1943): 115-133.

[45] Rosenblatt, Frank. "The perceptron: A probabilistic model for information
storage and organization in the brain." Psychological review 65.6 (1958):

386.

[46] Minsky, Marvin, and Seymour Papert. "Perceptrons." (1969).
[47] Ackley, David H., Geoffrey E. Hinton, and Terrence J. Sejnowski. "A

learning algorithm for Boltzmann machines." Cognitive science 9.1

(1985): 147-169.
[48] Fukushima, Kunihiko. "Neocognitron: A hierarchical neural network

capable of visual pattern recognition." Neural networks 1.2 (1988): 119-

130.
[49] LeCun, Yann, et al. "Gradient-based learning applied to document

recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

[50] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast
learning algorithm for deep belief nets." Neural computation 18.7 (2006):

1527-1554.

[51] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the
dimensionality of data with neural networks." science 313.5786 (2006):

504-507.

[52] Bottou, Léon. "Stochastic gradient descent tricks." Neural networks:
Tricks of the trade. Springer Berlin Heidelberg, 2012. 421-436.

[53] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams.

"Learning representations by back-propagating errors." Cognitive
modeling 5.3 (1988): 1.

[54] Sutskever, Ilya, et al. "On the importance of initialization and momentum

in deep learning." International conference on machine learning. 2013.
[55] Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle,

Greedy Layer-Wise Training of Deep Network, in J. Platt et al. (Eds),

Advances in Neural Information Processing Systems 19 (NIPS 2006), pp.
153-160, MIT Press, 2007

[56] Erhan, Dumitru, et al. "The difficulty of training deep architectures and

the effect of unsupervised pre-training." Artificial Intelligence and
Statistics. 2009.

[57] Mohamed, Abdel-rahman, George E. Dahl, and Geoffrey Hinton.

“Acoustic modeling using deep belief networks,”Audio, Speech, and
Language Processing, IEEE Transactions on 20.1 (2012): 14-22

[58] V. Nair and G. Hinton, Rectified linear units improve restricted boltzmann

machines. Proceedings of the 27th International Conference on Machine
Learning (ICML-10). 2010.

[59] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting

and composing robust features with denoising autoencoders,”
Proceedings of the Twenty-fifth International Conference on Machine

Learning, pp. 1096–1103, 2008.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

35

[60] Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv

preprint arXiv:1312.4400 (2013).
[61] Springenberg, Jost Tobias, et al. "Striving for simplicity: The all

convolutional net." arXiv preprint arXiv:1412.6806 (2014).

[62] Huang, Gao, et al. "Densely connected convolutional networks." arXiv
preprint arXiv:1608.06993 (2016).

[63] Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich.

"FractalNet: Ultra-Deep Neural Networks without Residuals." arXiv
preprint arXiv:1605.07648 (2016).

[64] Szegedy, Christian, Sergey Ioffe, and Vincent Vanhoucke. "Inception-v4,

inception-resnet and the impact of residual connections on learning."
arXiv preprint arXiv:1602.07261 (2016).

[65] Szegedy, Christian, et al. "Rethinking the inception architecture for

computer vision." arXiv preprint arXiv:1512.00567 (2015).
[66] Zagoruyko, Sergey, and Nikos Komodakis. "Wide Residual Networks."

arXiv preprint arXiv:1605.07146 (2016).

[67] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2016). Aggregated
residual transformations for deep neural networks. arXiv preprint

arXiv:1611.05431

[68] Veit, Andreas, Michael J. Wilber, and Serge Belongie. "Residual
networks behave like ensembles of relatively shallow

networks." Advances in Neural Information Processing Systems. 2016.

[69] Abdi, Masoud, and Saeid Nahavandi. "Multi-Residual Networks:
Improving the Speed and Accuracy of Residual Networks." arXiv preprint

arXiv:1609.05672 (2016).

[70] Zhang, Xingcheng, et al. "Polynet: A pursuit of structural diversity in
deep networks." arXiv preprint arXiv:1611.05725 (2016).

[71] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection
with region proposal networks." Advances in neural information

processing systems. 2015.

[72] Chollet, François. "Xception: Deep Learning with Depthwise Separable
Convolutions." arXiv preprint arXiv:1610.02357 (2016).

[73] Liang, Ming, and Xiaolin Hu. "Recurrent convolutional neural network

for object recognition." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015.

[74] Alom, Md Zahangir, et al. "Inception Recurrent Convolutional Neural

Network for Object Recognition." arXiv preprint
arXiv:1704.07709 (2017).

[75] Li, Yikang, et al. "ViP-CNN: Visual Phrase Guided Convolutional Neural

Network."
[76] Bagherinezhad, Hessam, Mohammad Rastegari, and Ali Farhadi.

"LCNN: Lookup-based Convolutional Neural Network." arXiv preprint

arXiv:1611.06473 (2016).
[77] Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully

convolutional networks for semantic segmentation." Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 2015.
[78] Bansal, Aayush, et al. "Pixelnet: Representation of the pixels, by the

pixels, and for the pixels." arXiv preprint arXiv:1702.06506(2017).

[79] Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint
arXiv:1603.09382 (2016).

[80] Lee, Chen-Yu, et al. "Deeply-Supervised Nets." AISTATS. Vol. 2. No. 3.

2015.
[81] Pezeshki, Mohammad, et al. "Deconstructing the ladder network

architecture." arXiv preprint arXiv:1511.06430 (2015).

[82] Ba, Jimmy, and Rich Caruana. "Do deep nets really need to be deep?."
Advances in neural information processing systems. 2014.

[83] Urban, Gregor, et al. "Do deep convolutional nets really need to be deep

and convolutional?." stat 1050 (2016): 4.
[84] Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." arXiv preprint

arXiv:1412.6550 (2014).

[85] Mishkin, Dmytro, and Jiri Matas. "All you need is a good init." arXiv
preprint arXiv:1511.06422 (2015).

[86] Pandey, Gaurav, and Ambedkar Dukkipati. "To go deep or wide in

learning?." AISTATS. 2014.
[87] Ratner, Alexander, et al. "Data Programming: Creating Large Training

Sets, Quickly." arXiv preprint arXiv:1605.07723 (2016).

[88] Aberger, Christopher R., et al. "Empty-Headed: A Relational Engine for
Graph Processing." arXiv preprint arXiv:1503.02368 (2015).

[89] Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x

fewer parameters and< 1MB model size." arXiv preprint
arXiv:1602.07360 (2016).

[90] Han, Song, Huizi Mao, and William J. Dally. "Deep compression:

Compressing deep neural network with pruning, trained quantization and
huffman coding." CoRR, abs/1510.00149 2 (2015).

[91] Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov. "Learning

Convolutional Neural Networks for Graphs." arXiv preprint
arXiv:1605.05273 (2016).

[92] https://github.com/kjw0612/awesome-deep-vision

[93] Jia, Xiaoyi, et al. "Single Image Super-Resolution Using Multi-Scale
Convolutional Neural Network." arXiv preprint

arXiv:1705.05084 (2017).

[94] Ahn, Byeongyong, and Nam Ik Cho. "Block-Matching Convolutional
Neural Network for Image Denoising." arXiv preprint

arXiv:1704.00524 (2017).

[95] Ma, Shuang, Jing Liu, and Chang Wen Chen. "A-Lamp: Adaptive Layout-
Aware Multi-Patch Deep Convolutional Neural Network for Photo

Aesthetic Assessment." arXiv preprint arXiv:1704.00248(2017).

[96] Cao, Xiangyong, et al. "Hyperspectral Image Segmentation with Markov
Random Fields and a Convolutional Neural Network." arXiv preprint

arXiv:1705.00727 (2017).

[97] de Vos, Bob D., et al. "End-to-End Unsupervised Deformable Image
Registration with a Convolutional Neural Network." arXiv preprint

arXiv:1704.06065 (2017).

[98] Wang, Xin, et al. "Multimodal Transfer: A Hierarchical Deep
Convolutional Neural Network for Fast Artistic Style Transfer." arXiv

preprint arXiv:1612.01895 (2016).

[99] Babaee, Mohammadreza, Duc Tung Dinh, and Gerhard Rigoll. "A deep
convolutional neural network for background subtraction." arXiv preprint

arXiv:1702.01731 (2017).

[100] Hou, Jen-Cheng, et al. "Audio-Visual Speech Enhancement based on
Multimodal Deep Convolutional Neural Network." arXiv preprint

arXiv:1703.10893 (2017).
[101] Xu, Yong, et al. "Convolutional gated recurrent neural network

incorporating spatial features for audio tagging." arXiv preprint

arXiv:1702.07787 (2017).
[102] Litjens, Geert, et al. "A survey on deep learning in medical image

analysis." arXiv preprint arXiv:1702.05747 (2017).

[103] Zhang, Zizhao, et al. "MDNet: a semantically and visually interpretable
medical image diagnosis network." arXiv preprint

arXiv:1707.02485 (2017).

[104] Tran, Phi Vu. "A fully convolutional neural network for cardiac
segmentation in short-axis MRI." arXiv preprint

arXiv:1604.00494(2016).

[105] Tan, Jen Hong, et al. "Segmentation of optic disc, fovea and retinal
vasculature using a single convolutional neural network." Journal of

Computational Science 20 (2017): 70-79.

[106] Moeskops, Pim, et al. "Automatic segmentation of MR brain images with
a convolutional neural network." IEEE transactions on medical

imaging 35.5 (2016): 1252-1261.

[107] LeCun, Y., L. Bottou, and G. Orr. "Efficient BackProp in Neural
Networks: Tricks of the Trade (Orr, G. and Müller, K., eds.)." Lecture

Notes in Computer Science 1524.

[108] Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of
training deep feedforward neural networks." International conference on

artificial intelligence and statistics. 2010.

[109] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification." Proceedings of the IEEE

international conference on computer vision. 2015.

[110] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating
deep network training by reducing internal covariate shift." International

Conference on Machine Learning. 2015.

[111] Laurent, César, et al. "Batch normalized recurrent neural
networks." Acoustics, Speech and Signal Processing (ICASSP), 2016

IEEE International Conference on. IEEE, 2016.

[112] Lavin, Andrew. "Fast algorithms for convolutional neural networks."
arXiv preprint arXiv , ICLR 2016

[113] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and

accurate deep network learning by exponential linear units (elus)." arXiv
preprint arXiv:1511.07289 (2015).

[114] Li, Yang, et al. "Improving Deep Neural Network with Multiple

Parametric Exponential Linear Units." arXiv preprint arXiv:1606.00305
(2016).

[115] Jin, Xiaojie, et al. "Deep Learning with S-shaped Rectified Linear

Activation Units." arXiv preprint arXiv:1512.07030 (2015).
[116] Xu, Bing, et al. "Empirical evaluation of rectified activations in

convolutional network." arXiv preprint arXiv:1505.00853 (2015)

[117] He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional
networks for visual recognition." European Conference on Computer

Vision. Springer, Cham, 2014.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

36

[118] Yoo, Donggeun, et al. "Multi-scale pyramid pooling for deep

convolutional representation." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops. 2015.

[119] Graham, Benjamin. "Fractional max-pooling." arXiv preprint

arXiv:1412.6071 (2014).
[120] Lee, Chen-Yu, Patrick W. Gallagher, and Zhuowen Tu. "Generalizing

pooling functions in convolutional neural networks: Mixed, gated, and

tree." International Conference on Artificial Intelligence and Statistics.
2016.

[121] Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-

adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).
[122] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural

networks from overfitting." Journal of Machine Learning Research 15.1

(2014): 1929-1958.
[123] Wan, Li, et al. "Regularization of neural networks using dropconnect."

Proceedings of the 30th International Conference on Machine Learning

(ICML-13). 2013.
[124] Bulò, Samuel Rota, Lorenzo Porzi, and Peter Kontschieder. "Dropout

distillation." Proceedings of The 33rd International Conference on

Machine Learning. 2016.
[125] Ruder, Sebastian. "An overview of gradient descent optimization

algorithms." arXiv preprint arXiv:1609.04747 (2016).

[126] Ngiam, Jiquan, et al. "On optimization methods for deep learning."
Proceedings of the 28th International Conference on Machine Learning

(ICML-11). 2011.

[127] Koushik, Jayanth, and Hiroaki Hayashi. "Improving Stochastic Gradient
Descent with Feedback." arXiv preprint arXiv:1611.01505 (2016).

(ICLR-2017)
[128] Sathasivam, Saratha, and Wan Ahmad Tajuddin Wan Abdullah. "Logic

learning in Hopfield networks." arXiv preprint arXiv:0804.4075 (2008).

[129] Elman, Jeffrey L. "Finding structure in time." Cognitive science14.2
(1990): 179-211.

[130] Jordan, Michael I. "Serial order: A parallel distributed processing

approach." Advances in psychology 121 (1997): 471-495.

[131] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient

flow in recurrent nets: the difficulty of learning long-term

dependencies. In S. C. Kremer and J. F. Kolen, editors, A Field

Guide to Dynamical Recurrent Neural Networks. IEEE Press,

2001.

[132] Schmidhuber, Jürgen . Habilitation thesis: System modeling and

optimization in 1993. Page 150 ff demonstrates credit assignment across

the equivalent of 1,200 layers in an unfolded RNN

[133] Gers, Felix A., and Jürgen Schmidhuber. "Recurrent nets that time and
count." Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-

INNS-ENNS International Joint Conference on. Vol. 3. IEEE, 2000.

[134] Gers, Felix A., Nicol N. Schraudolph, and Jürgen Schmidhuber.
"Learning precise timing with LSTM recurrent networks." Journal of

machine learning research 3.Aug (2002): 115-143.

[135] Mikolov, Tomas, et al. "Recurrent neural network based language
model." Interspeech. Vol. 2. 2010.

[136] Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural

networks on sequence modeling." arXiv preprint
arXiv:1412.3555 (2014).

[137] Jozefowicz, Rafal, Wojciech Zaremba, and Ilya Sutskever. "An empirical

exploration of recurrent network architectures." Proceedings of the 32nd
International Conference on Machine Learning (ICML-15). 2015.

[138] Yao, Kaisheng, et al. "Depth-gated LSTM." arXiv preprint

arXiv:1508.03790(2015).
[139] Koutnik, Jan, et al. "A clockwork rnn." International Conference on

Machine Learning. 2014.

[140] Greff, Klaus, et al. "LSTM: A search space odyssey." IEEE transactions
on neural networks and learning systems (2016).

[141] Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for

generating image descriptions." Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2015.

[142] Xingjian, S. H. I., et al. "Convolutional LSTM network: A machine

learning approach for precipitation nowcasting." Advances in neural

information processing systems. 2015.

[143] Mikolov, Tomas, et al. "Efficient estimation of word representations in
vector space." arXiv preprint arXiv:1301.3781 (2013).

[144] Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving

Mikolov et al.'s negative-sampling word-embedding method." arXiv
preprint arXiv:1402.3722 (2014).

[145] Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation

with visual a attention." International Conference on Machine Learning.
2015.

[146] Qin, Yao, et al. "A Dual-Stage Attention-Based Recurrent Neural

Network for Time Series Prediction." arXiv preprint
arXiv:1704.02971 (2017).

[147] Xiong, Caiming, Stephen Merity, and Richard Socher. "Dynamic memory

networks for visual and textual question answering." International
Conference on Machine Learning. 2016.

[148] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel

recurrent neural networks." arXiv preprint arXiv:1601.06759(2016).
[149] Xue, Wufeng, et al. "Direct Estimation of Regional Wall Thicknesses via

Residual Recurrent Neural Network." International Conference on

Information Processing in Medical Imaging. Springer, Cham, 2017.
[150] Tjandra, Andros, et al. "Gated Recurrent Neural Tensor Network." Neural

Networks (IJCNN), 2016 International Joint Conference on. IEEE, 2016.

[151] Wang, Shuohang, and Jing Jiang. "Learning natural language inference
with LSTM." arXiv preprint arXiv:1512.08849 (2015).

[152] Sutskever, Ilya, Oriol Vinyals, and Quoc VV Le. “Sequence to sequence

learning with neural networks.” Advances in Neural Information
Processing Systems. 2014.

[153] Lakhani, Vrishabh Ajay, and Rohan Mahadev. "Multi-Language

Identification Using Convolutional Recurrent Neural Network." arXiv
preprint arXiv:1611.04010 (2016).

[154] Längkvist, Martin, Lars Karlsson, and Amy Loutfi. "A review of

unsupervised feature learning and deep learning for time-series
modeling." Pattern Recognition Letters 42 (2014): 11-24.

[155] Malhotra, Pankaj, et al. "TimeNet: Pre-trained deep recurrent neural
network for time series classification." arXiv preprint

arXiv:1706.08838 (2017).

[156] Soltau, Hagen, Hank Liao, and Hasim Sak. "Neural speech recognizer:
Acoustic-to-word LSTM model for large vocabulary speech

recognition." arXiv preprint arXiv:1610.09975 (2016).

[157] Sak, Haşim, Andrew Senior, and Françoise Beaufays. "Long short-term
memory recurrent neural network architectures for large scale acoustic

modeling." Fifteenth Annual Conference of the International Speech

Communication Association. 2014.
[158] Adavanne, Sharath, Pasi Pertilä, and Tuomas Virtanen. "Sound event

detection using spatial features and convolutional recurrent neural

network." arXiv preprint arXiv:1706.02291 (2017).
[159] Chien, Jen-Tzung, and Alim Misbullah. "Deep long short-term memory

networks for speech recognition." Chinese Spoken Language Processing

(ISCSLP), 2016 10th International Symposium on. IEEE, 2016.
[160] Choi, Edward, et al. "Using recurrent neural network models for early

detection of heart failure onset." Journal of the American Medical

Informatics Association 24.2 (2016): 361-370.
[161] Li, Yaguang, et al. "Graph Convolutional Recurrent Neural Network:

Data-Driven Traffic Forecasting." arXiv preprint

arXiv:1707.01926 (2017).
[162] Azzouni, Abdelhadi, and Guy Pujolle. "A Long Short-Term Memory

Recurrent Neural Network Framework for Network Traffic Matrix

Prediction." arXiv preprint arXiv:1705.05690 (2017).
[163] Olabiyi, Oluwatobi, et al. "Driver Action Prediction Using Deep

(Bidirectional) Recurrent Neural Network." arXiv preprint

arXiv:1706.02257 (2017).
[164] Kim, ByeoungDo, et al. "Probabilistic Vehicle Trajectory Prediction over

Occupancy Grid Map via Recurrent Neural Network." arXiv preprint

arXiv:1704.07049 (2017).
[165] Richard, Alexander, and Juergen Gall. "A bag-of-words equivalent

recurrent neural network for action recognition." Computer Vision and

Image Understanding 156 (2017): 79-91.
[166] Bontemps, Loïc, James McDermott, and Nhien-An Le-Khac. "Collective

Anomaly Detection Based on Long Short-Term Memory Recurrent

Neural Networks." International Conference on Future Data and Security
Engineering. Springer International Publishing, 2016.

[167] Kingma, Diederik P., and Max Welling. "Stochastic gradient VB and the

variational auto-encoder." Second International Conference on Learning
Representations, ICLR. 2014.

[168] Ng, Andrew. "Sparse autoencoder." CS294A Lecture notes72.2011

(2011): 1-19.
[169] Vincent, Pascal, et al. "Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising

criterion." Journal of Machine Learning Research 11.Dec (2010): 3371-
3408.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

37

[170] Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Split-brain

autoencoders: Unsupervised learning by cross-channel prediction." arXiv
preprint arXiv:1611.09842 (2016).

[171] Chicco, Davide; Sadowski, Peter; Baldi, Pierre (1 January

2014). "Deep Autoencoder Neural Networks for Gene Ontology

Annotation Predictions". Proceedings of the 5th ACM Conference

on Bioinformatics, Computational Biology, and Health

Informatics - BCB '14. ACM: 533–540.
[172] Alom, Md Zahangir and Tarek M. Taha. " Network Intrusion Detection

for Cyber Security using Unsupervised Deep Learning Approaches

" Aerospace and Electronics Conference (NAECON), National. IEEE,
2017.

[173] Song, Chunfeng, et al. "Auto-encoder based data

clustering." Iberoamerican Congress on Pattern Recognition. Springer

Berlin Heidelberg, 2013.
[174] Lu, Jiajun, Aditya Deshpande, and David Forsyth. "CDVAE: Co-

embedding Deep Variational Auto Encoder for Conditional Variational

Generation." arXiv preprint arXiv:1612.00132 (2016).
[175] Ahmad, Muhammad, Stanislav Protasov, and Adil Mehmood Khan.

"Hyperspectral Band Selection Using Unsupervised Non-Linear Deep

Auto Encoder to Train External Classifiers." arXiv preprint
arXiv:1705.06920 (2017).

[176] Freund, Yoav, and David Haussler. "Unsupervised learning of

distributions of binary vectors using two layer networks." (1994).
[177] Larochelle, Hugo, and Yoshua Bengio. "Classification using

discriminative restricted Boltzmann machines." Proceedings of the 25th

international conference on Machine learning. ACM, 2008.

[178] R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In

AISTATS, volume 1, page 3, 2009.
[179] Alom, Md Zahangir, VenkataRamesh Bontupalli, and Tarek M. Taha.

"Intrusion detection using deep belief networks." Aerospace and

Electronics Conference (NAECON), 2015 National. IEEE, 2015.
[180] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural

information processing systems. 2014.

[181] T. Salimans, I. Goodfellow, W. Zaremba, V. Che- ung, A. Radford, and
X. Chen. Improved techniques for training gans. arXiv preprint

arXiv:1606.03498, 2016.

[182] Vondrick, Carl, Hamed Pirsiavash, and Antonio Torralba. "Generating
videos with scene dynamics." Advances In Neural Information

Processing Systems. 2016.

[183] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised

representation learning with deep convolutional generative adversarial

networks." arXiv preprint arXiv:1511.06434 (2015).
[184] X. Wang and A. Gupta. Generative image modeling using style and

structure adversarial networks. In Proc. ECCV, 2016.

[185] Chen, Xi, et al. "InfoGAN: Interpretable representation learning by
information maximizing generative adversarial nets." Advances in Neural

Information Processing Systems. 2016.

[186] D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. Generating images with
recurrent adversarial net- works. http://arxiv.org/abs/ 1602.05110, 2016.

[187] Isola, Phillip, et al. "Image-to-image translation with conditional

adversarial networks." arXiv preprint (2017).
[188] Liu, Ming-Yu, and Oncel Tuzel. "Coupled generative adversarial

networks." Advances in neural information processing systems. 2016.

[189] Donahue, Jeff, Philipp Krähenbühl, and Trevor Darrell. "Adversarial
feature learning." arXiv preprint arXiv:1605.09782 (2016).

[190] Berthelot, David, Tom Schumm, and Luke Metz. "Began: Boundary

equilibrium generative adversarial networks." arXiv preprint
arXiv:1703.10717(2017).

[191] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan.

arXiv preprint arXiv:1701.07875, 2017.
[192] Gulrajani, Ishaan, et al. "Improved training of wasserstein gans." arXiv

preprint arXiv:1704.00028 (2017).

[193] He, Kun, Yan Wang, and John Hopcroft. "A powerful generative model
using random weights for the deep image representation." Advances in

Neural Information Processing Systems. 2016.

[194] Kos, Jernej, Ian Fischer, and Dawn Song. "Adversarial examples for
generative models." arXiv preprint arXiv:1702.06832 (2017).

[195] Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based

generative adversarial network." arXiv preprint
arXiv:1609.03126 (2016).

[196] Park, Noseong, et al. "MMGAN: Manifold Matching Generative

Adversarial Network for Generating Images." arXiv preprint
arXiv:1707.08273 (2017).

[197] Laloy, Eric, et al. "Efficient training-image based geostatistical simulation

and inversion using a spatial generative adversarial neural
network." arXiv preprint arXiv:1708.04975 (2017).

[198] Eghbal-zadeh, Hamid, and Gerhard Widmer. "Probabilistic Generative

Adversarial Networks." arXiv preprint arXiv:1708.01886 (2017).
[199] Fowkes, Jaroslav, and Charles Sutton. "A Bayesian Network Model for

Interesting Itemsets." Joint European Conference on Machine Learning

and Knowledge Disco in Databases. Springer International Publishing,
2016.

[200] Mescheder, Lars, Sebastian Nowozin, and Andreas Geiger. "Adversarial

variational bayes: Unifying variational autoencoders and generative
adversarial networks." arXiv preprint arXiv:1701.04722 (2017).

[201] Nowozin, Sebastian, Botond Cseke, and Ryota Tomioka. "f-gan: Training

generative neural samplers using variational divergence
minimization." Advances in Neural Information Processing Systems.

2016.

[202] Li, Chuan, and Michael Wand. "Precomputed real-time texture synthesis
with markovian generative adversarial networks." European Conference

on Computer Vision. Springer International Publishing, 2016.

[203] Du, Chao, Jun Zhu, and Bo Zhang. "Learning Deep Generative Models
with Doubly Stochastic Gradient MCMC." IEEE Transactions on Neural

Networks and Learning Systems (2017).

[204] Hoang, Quan, et al. "Multi-Generator Gernerative Adversarial
Nets." arXiv preprint arXiv:1708.02556 (2017).

[205] Bousmalis, Konstantinos, et al. "Unsupervised pixel-level domain

adaptation with generative adversarial networks." arXiv preprint
arXiv:1612.05424 (2016).

[206] Kansky, Ken, et al. "Schema Networks: Zero-shot Transfer with a
Generative Causal Model of Intuitive Physics." arXiv preprint

arXiv:1706.04317 (2017).

[207] Ledig, Christian, et al. "Photo-realistic single image super-resolution
using a generative adversarial network." arXiv preprint

arXiv:1609.04802 (2016).

[208] Souly, Nasim, Concetto Spampinato, and Mubarak Shah. "Semi and
Weakly Supervised Semantic Segmentation Using Generative

Adversarial Network." arXiv preprint arXiv:1703.09695 (2017).

[209] Dash, Ayushman, et al. "TAC-GAN-Text Conditioned Auxiliary
Classifier Generative Adversarial Network." arXiv preprint

arXiv:1703.06412 (2017).

[210] Zhang, Hang, and Kristin Dana. "Multi-style Generative Network for
Real-time Transfer." arXiv preprint arXiv:1703.06953 (2017).

[211] Zhang, He, Vishwanath Sindagi, and Vishal M. Patel. "Image De-raining

Using a Conditional Generative Adversarial Network." arXiv preprint
arXiv:1701.05957 (2017).

[212] Serban, Iulian Vlad, et al. "Building End-To-End Dialogue Systems Using

Generative Hierarchical Neural Network Models." AAAI. 2016.
[213] Pascual, Santiago, Antonio Bonafonte, and Joan Serrà. "SEGAN: Speech

Enhancement Generative Adversarial Network." arXiv preprint

arXiv:1703.09452 (2017).
[214] Yang, Li-Chia, Szu-Yu Chou, and Yi-Hsuan Yang. "MidiNet: A

convolutional generative adversarial network for symbolic-domain music

generation." Proceedings of the 18th International Society for Music
Information Retrieval Conference (ISMIR’2017), Suzhou, China. 2017.

[215] Yang, Qingsong, et al. "Low Dose CT Image Denoising Using a

Generative Adversarial Network with Wasserstein Distance and
Perceptual Loss." arXiv preprint arXiv:1708.00961 (2017).

[216] Rezaei, Mina, et al. "Conditional Adversarial Network for Semantic

Segmentation of Brain Tumor." arXiv preprint arXiv:1708.05227(2017)
[217] Xue, Yuan, et al. "SegAN: Adversarial Network with Multi-scale $ L_1 $

Loss for Medical Image Segmentation." arXiv preprint

arXiv:1706.01805 (2017).
[218] Mardani, Morteza, et al. "Deep Generative Adversarial Networks for

Compressed Sensing Automates MRI." arXiv preprint

arXiv:1706.00051 (2017).
[219] Choi, Edward, et al. "Generating Multi-label Discrete Electronic Health

Records using Generative Adversarial Networks." arXiv preprint

arXiv:1703.06490 (2017).
[220] Esteban, Cristóbal, Stephanie L. Hyland, and Gunnar Rätsch. "Real-

valued (Medical) Time Series Generation with Recurrent Conditional

GANs." arXiv preprint arXiv:1706.02633 (2017).
[221] Hayes, Jamie, et al. "LOGAN: Evaluating Privacy Leakage of Generative

Models Using Generative Adversarial Networks." arXiv preprint

arXiv:1705.07663 (2017).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

38

[222] Gordon, Jonathan, and José Miguel Hernández-Lobato. "Bayesian

Semisupervised Learning with Deep Generative Models." arXiv preprint
arXiv:1706.09751 (2017).

[223] Abbasnejad, M. Ehsan, et al. "Bayesian Conditional Generative

Adverserial Networks." arXiv preprint arXiv:1706.05477 (2017).
[224] Grnarova, Paulina, et al. "An Online Learning Approach to Generative

Adversarial Networks." arXiv preprint arXiv:1706.03269 (2017).

[225] Li, Yujia, Kevin Swersky, and Rich Zemel. "Generative moment
matching networks." Proceedings of the 32nd International Conference

on Machine Learning (ICML-15). 2015.

[226] Li, Chun-Liang, et al. "MMD GAN: Towards Deeper Understanding of
Moment Matching Network." arXiv preprint arXiv:1705.08584(2017).

[227] Nie, Xuecheng, et al. "Generative Partition Networks for Multi-Person

Pose Estimation." arXiv preprint arXiv:1705.07422 (2017).
[228] Saeedi, Ardavan, et al. "Multimodal Prediction and Personalization of

Photo Edits with Deep Generative Models." arXiv preprint

arXiv:1704.04997 (2017).
[229] Schlegl, Thomas, et al. "Unsupervised Anomaly Detection with

Generative Adversarial Networks to Guide Marker Disco ." International

Conference on Information Processing in Medical Imaging. Springer,
Cham, 2017.

[230] Kim, Taeksoo, et al. "Learning to discover cross-domain relations with

generative adversarial networks." arXiv preprint
arXiv:1703.05192 (2017).

[231] Mehrotra, Akshay, and Ambedkar Dukkipati. "Generative Adversarial

Residual Pairwise Networks for One Shot Learning." arXiv preprint
arXiv:1703.08033 (2017).

[232] Sordoni, Alessandro, et al. "A neural network approach to context-
sensitive generation of conversational responses." arXiv preprint

arXiv:1506.06714(2015).

[233] Yin, Jun, et al. "Neural generative question answering." arXiv preprint
arXiv:1512.01337 (2015).

[234] Li, Yuxi. "Deep reinforcement learning: An overview." arXiv preprint

arXiv:1701.07274 (2017).
[235] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning.

MIT press, 2016.

[236] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,

Veda Panneershelvam, Marc Lanc- tot, et al. Mastering the game of Go

with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[237] Vinyals, Oriol, et al. "StarCraft II: A New Challenge for Reinforcement

Learning." arXiv preprint arXiv:1708.04782 (2017).
[238] Koenig, Sven, and Reid G. Simmons. Complexity analysis of real-time

reinforcement learning applied to finding shortest paths in deterministic

domains. No. CMU-CS-93-106. CARNEGIE-MELLON UNIV
PITTSBURGH PA SCHOOL OF COMPUTER SCIENCE, 1992.

[239] Schulman, John, et al. "Trust region policy optimization." Proceedings of

the 32nd International Conference on Machine Learning (ICML-15).
2015.

[240] Levine, Sergey, et al. "End-to-end training of deep visuomotor

policies." Journal of Machine Learning Research 17.39 (2016): 1-40.
[241] Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement

learning." International Conference on Machine Learning. 2016.

[242] Kober, Jens, J. Andrew Bagnell, and Jan Peters. "Reinforcement learning
in robotics: A survey." The International Journal of Robotics

Research 32.11 (2013): 1238-1274.

[243] Arulkumaran, Kai, et al. "A brief survey of deep reinforcement
learning." arXiv preprint arXiv:1708.05866 (2017).

[244] Zhu, Feiyun, et al. "Cohesion-based Online Actor-Critic Reinforcement

Learning for mHealth Intervention." arXiv preprint
arXiv:1703.10039 (2017).

[245] Zhu, Feiyun, et al. "Group-driven Reinforcement Learning for

Personalized mHealth Intervention." arXiv preprint
arXiv:1708.04001 (2017).

[246] Steckelmacher, Denis, et al. "Reinforcement Learning in POMDPs with

Memoryless Options and Option-Observation Initiation Sets." arXiv
preprint arXiv:1708.06551 (2017).

[247] Hu, Haoyuan, et al. "Solving a new 3d bin packing problem with deep

reinforcement learning method." arXiv preprint
arXiv:1708.05930 (2017).

[248] Everitt, Tom, et al. "Reinforcement Learning with a Corrupted Reward

Channel." arXiv preprint arXiv:1705.08417 (2017).

[249] Wu, Yuhuai, et al. "Scalable trust-region method for deep reinforcement

learning using Kronecker-factored approximation." arXiv preprint
arXiv:1708.05144 (2017).

[250] Denil, Misha, et al. "Learning to perform physics experiments via deep

reinforcement learning." arXiv preprint arXiv:1611.01843(2016).
[251] Hein, Daniel, et al. "Particle swarm optimization for generating

interpretable fuzzy reinforcement learning policies." Engineering

Applications of Artificial Intelligence 65 (2017): 87-98.
[252] Islam, Riashat, et al. "Reproducibility of Benchmarked Deep

Reinforcement Learning Tasks for Continuous Control." arXiv preprint

arXiv:1708.04133 (2017).
[253] Inoue, Tadanobu, et al. "Deep reinforcement learning for high precision

assembly tasks." arXiv preprint arXiv:1708.04033(2017).

[254] Li, Kun, and Joel W. Burdick. "Inverse Reinforcement Learning in Large
State Spaces via Function Approximation." arXiv preprint

arXiv:1707.09394 (2017).

[255] Liu, Ning, et al. "A Hierarchical Framework of Cloud Resource
Allocation and Power Management Using Deep Reinforcement

Learning." Distributed Computing Systems (ICDCS), 2017 IEEE 37th

International Conference on. IEEE, 2017.
[256] Cao, Qingxing, et al. "Attention-aware face hallucination via deep

reinforcement learning." arXiv preprint arXiv:1708.03132 (2017).

[257] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net:

Accelerating learning via knowledge transfer." arXiv preprint

arXiv:1511.05641 (2015).

[258] Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised domain

adaptation by backpropagation." arXiv preprint arXiv:1409.7495 (2014).

[259] Ganin, Yaroslav, et al. "Domain-adversarial training of neural

networks." Journal of Machine Learning Research 17.59 (2016): 1-35.

[260] Pan, Sinno Jialin, and Qiang Yang. "A survey on transfer learning." IEEE

Transactions on knowledge and data engineering22.10 (2010): 1345-

1359.
[261] McKeough, Anne. Teaching for transfer: Fostering generalization in

learning. Routledge, 2013.

[262] Raina, Rajat, et al. "Self-taught learning: transfer learning from unlabeled
data." Proceedings of the 24th international conference on Machine

learning. ACM, 2007

[263] Dai, Wenyuan, et al. "Boosting for transfer learning." Proceedings of the
24th international conference on Machine learning. ACM, 2007.

[264] Han, Song, Huizi Mao, and William J. Dally. "Deep compression:

Compressing deep neural networks with pruning, trained quantization and

huffman coding." arXiv preprint arXiv:1510.00149 (2015).

[265] Qiu, Jiantao, et al. "Going deeper with embedded FPGA platform for

convolutional neural network." Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,

2016.

[266] He, Kaiming, and Jian Sun. "Convolutional neural networks at
constrained time cost." Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 2015.

[267] 13. Lin, Zhouhan, et al. "Neural networks with few multiplications."
arXiv preprint arXiv:1510.03009 (2015).

[268] 14. Courbariaux, Matthieu, Jean-Pierre David, and Yoshua Bengio.

"Training deep neural networks with low precision multiplications." arXiv
preprint arXiv:1412.7024 (2014).

[269] Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David.

"Binaryconnect: Training deep neural networks with binary weights
during propagations." Advances in Neural Information Processing

Systems. 2015.

[270] Hubara, Itay, Daniel Soudry, and Ran El Yaniv. "Binarized Neural
Networks." arXiv preprint arXiv:1602.02505 (2016).

[271] Kim, Minje, and Paris Smaragdis. "Bitwise neural networks." arXiv

preprint arXiv:1601.06071 (2016).
[272] Dettmers, Tim. "8-Bit Approximations for Parallelism in Deep Learning."

arXiv preprint arXiv:1511.04561 (2015).

[273] Gupta, Suyog, et al. "Deep learning with limited numerical precision."
CoRR, abs/1502.02551 392 (2015).

[274] Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using

Binary Convolutional Neural Networks." arXiv preprint
arXiv:1603.05279(2016).

[275] Merolla, Paul A., et al. "A million spiking-neuron integrated circuit with

a scalable communication network and interface." Science345.6197
(2014): 668-673.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

39

[276] Esser, Steven K., et al. "Convolutional networks for fast, energy-efficient

neuromorphic computing “Proceedings of the National Academy of
Science (2016): 201604850.

[277] Schuman, Catherine D., et al. "A Survey of Neuromorphic Computing and

Neural Networks in Hardware." arXiv preprint arXiv:1705.06963 (2017).
[278] Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks." IEEE Journal of

Solid-State Circuits 52.1 (2017): 127-138.
[279] Chen, Yunji, et al. "Dadiannao: A machine-learning

supercomputer." Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture. IEEE Computer Society,
2014.

[280] Jouppi, Norman P., et al. "In-datacenter performance analysis of a tensor

processing unit." arXiv preprint arXiv:1704.04760 (2017).
[281] Han, Song, et al. "EIE: efficient inference engine on compressed deep

neural network." Proceedings of the 43rd International Symposium on

Computer Architecture. IEEE Press, 2016.
[282] Zhang, Xiangyu, et al. "Efficient and accurate approximations of

nonlinear convolutional networks." Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2015.
[283] Novikov, Alexander, et al. "Tensorizing neural networks." Advances in

Neural Information Processing Systems. 2015.

[284] Zhu, Chenzhuo, et al. "Trained ternary quantization." arXiv preprint
arXiv:1612.01064 (2016).

[285] Russakovsky, Olga, et al. "Imagenet large scale visual recognition

challenge." International Journal of Computer Vision 115.3 (2015): 211-
252.

[286] Oord, Aaron van den, et al. "Wavenet: A generative model for raw
audio." arXiv preprint arXiv:1609.03499 (2016).

[287] Zhang, Xingcheng, et al. "Polynet: A pursuit of structural diversity in

deep networks." 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017.

[288] Kunihiko Fukushima, "Neural network model for selective attention in

visual pattern recognition and associative recall," Appl. Opt. 26, 4985-
4992 (1987)

[289] Alom, Md Zahangir, et al. "Handwritten Bangla Digit Recognition Using

Deep Learning." arXiv preprint arXiv:1705.02680 (2017)
[290] Alom, Md Zahangir, et al. "Improved Inception-Residual Convolutional

Neural Network for Object Recognition." arXiv preprint

arXiv:1712.09888 (2017).
[291] Alom, Md Zahangir, et al. "Handwritten Bangla Character Recognition

Using The State-of-Art Deep Convolutional Neural Networks." arXiv

preprint arXiv:1712.09872 (2017).
[292] Socher, Richard, et al. "Parsing natural scenes and natural language with

recursive neural networks." Proceedings of the 28th international

conference on machine learning (ICML-11). 2011.
[293] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing

between capsules." Advances in Neural Information Processing Systems.

2017.
[294] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A

tutorial and survey." Proceedings of the IEEE105.12 (2017): 2295-2329.

[295] Rawat, Waseem, and Zenghui Wang. "Deep convolutional neural
networks for image classification: A comprehensive review." Neural

computation 29.9 (2017): 2352-2449.

[296] Alom, Md Zahangir, et al. "Optical beam classification using deep
learning: a comparison with rule-and feature-based classification." Optics

and Photonics for Information Processing XI. Vol. 10395. International

Society for Optics and Photonics, 2017.
[297] Alom, Md Zahangir, et al. "Object recognition using cellular simultaneous

recurrent networks and convolutional neural network." Neural Networks

(IJCNN), 2017 International Joint Conference on. IEEE, 2017.
[298] Alom, Md Zahangir, et al. "Deep Versus Wide Convolutional Neural

Networks for Object Recognition on Neuromorphic System." arXiv

preprint arXiv:1802.02608 (2018).
[299] Alom, Md Zahangir, et al. "Effective Quantization Approaches for

Recurrent Neural Networks." arXiv preprint arXiv:1802.02615 (2018).

[300] Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net:
Convolutional networks for biomedical image

segmentation." International Conference on Medical image computing

and computer-assisted intervention. Springer, Cham, 2015.
[301] Alom, Md Zahangir, et al. "Recurrent Residual Convolutional Neural

Network based on U-Net (R2U-Net) for Medical Image

Segmentation." arXiv preprint arXiv:1802.06955 (2018).
[302] Alom, Md Zahangir, and Tarek M. Taha. "Network intrusion detection for

cyber security using unsupervised deep learning approaches." Aerospace

and Electronics Conference (NAECON), 2017 IEEE National. IEEE,

2017.

