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Abstract ---This paper aims to device an 
architecture which uses capability of asynchronous 
concurrency of the data flow architecture as well as 
spatial parallelism of SIMD machines for a class of 
image processing applications using reconfigurable 
processing elements (RPEs). Overall processing 
speed is enhanced by a) concurrent functioning of 
the RPEs and b) replacing software execution of 
signal processing functions by hardware approach 
using FPGAs as RPEs. Thus, a hybrid architecture, 
which functions as a data flow machine at a 
functional level and exploits the capability of 
handling spatial paraIleIism by incorporating a 
modified SIMD concepts is presented. 

Zndex terms ---Control Unit (Cv), Signal Processing 
Instructions (SPIs), Processing Elements (PES), Bit 
stream memory module (BSMM), Interconnection 
Network (ICN). 

1. INTRODUCTION 
Intensive and complex computations are 

required for image processing algorithms on enormous 
amount of data. The real time processing requirement 
of this huge amount data will be far below the 
processing speed of the fastest available uni-processor 
system. It is observed that a large class of image 
processing algorithms exhibit spatial parallelism and is 
most suitable for SIMD machines. Imaging 
Architecture based on SIMD concept has been reported 
in [1][2][3] and a re-configurable SIMD architecture 
has been reported in [4]. SIMD machines employ a 
large number of tiny PES working concurrently under 
the control of a CU. For a given algorithm, the CU will 
have to broadcast the simple machine instructions in 
lock-step fashion corresponding to a complex imaging 
instruction to all the PES. In this process CU efficiency 
goes down to a large extent. Apart from that, the 
efficiency of these machines is limited by 1) Capability 
of the PES, 2) Data communication between the PES, 
3) Capability of handling tree-structured algorithms. 

High-speed requirements of digital image 
processing algorithms can be achieved by exploiting 
the spatial parallelism inherent in the algorithms and 
using a no of dedicated hardware to execute the 
specific functions. However incorporating all the 
functions in a single processing element will lead to 
complex, inefficient and costly solution. This problem 
can be handled by introducing dynamically 

reconfigurable [5] [6]  parallel architecture where PES 
can be reconfigured on the fly depending on the Signal 
Processing Instructions (SPIs) issued to by the CU. 

Data flow architectures [14][151 offers a possible 
way of exploiting concurrency of computations on a 
large scale. Highly concurrent computation in Data- 
flow concept is achieved by data-driven approach. In 
this model instruction firing is asynchronous [7][8][9]. 
These properties are especially suitable for Image 
Processing computations [lo][ 1 11. 

For a given imaging application, SIMD technique 
alone cannot handle the whole algorithm because an 
algorithm can be viewed as a collection of functional 
units working asynchronously and concurrently. 
However, each functional unit exhibits SIMD kind of 
spatial parallelism. Hence, in order to achieve 
substantial throughput gain, the approach should be to 
devise a technique such that there should be two fold 
concurrency: asynchronous concurrency at the top 
level and spatial parallelism within the functional 
units. Keeping this in view, this paper present a new 
hybrid architecture, which uses modified SIMD 
concepts as the processing units of the Data-flow 
machine at a functional level. 

2. PROPOSED ARCHITECTURE 
Since the proposed architecture (fig. 1) i s  meant 

for handling image-processing algorithms, it should be 
capable of handling both scalar and vector instructions 
efficiently. 

Fct& lmlt 

- 
FIgmr 1: A" d the Hybrid DF-SIMD Machine 

Scalar instructions are simple arithmetic (ADD, 
SUB), logical operators (AND, OR, etc.), relational 
(GREATER-THAN, LESS-THAN, etc.), decision 
making (SELECT, MERGE) etc.. Vector instructions 
include the imaging functions like FFI', SMOOTH, 
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EDGE-DETECTION, COSINE TRANSFORM, 
IMAGE RESTORATION etc.. Since these functions 
exhibit spatial parallelism, the basic processing unit of 
the proposed architecture is based on SIMD machines. 

The architecture consists of five blocks: 1) 
Activity Template Storage Unit 2) Instruction 
Queue Unit 3) Fetch Unit 4) Processing Unit and 5) 
Update Control Unit. 

SI OpCode Dednation Pointertodata 
v Address or Data1 

Data2 
7 .. 

UPDATE CONTROL UNIT (UCV): This unit takes 
in the data tokens from the Processing unit (PU) and 
store then in its input pool and then passes them to 
their destination instructions in the ATSU depending 
on their availability. It also tests whether all the 
operands and acknowledge packets required to activate 
the destination instruction has been received and, if so, 
enters the instruction address into the Instruction 
Queue. 

3 

INSTRUCTION QUEUE UNIT (IQU): This unit 
stores the address of the active activity template. It is a 
FlFO buffer store. During execution the number of 
entries in the instruction queue measures the degree of 
concurrency present in the program. 

Jnrertrmndnn Nehmrk (IC?.?) DYA 

- 

FETCH UNIT @U): This unit fetches templates from 
ATSU depending on the address in IQU and sends a 
complete operation packet to PU by placing it into the 
Operation Packet Queue (OPQ). 

PROCESSING UNIT: This unit (fig. 2) consists of 
“OPQ’, “CU”, “vector processing unit (VPU)” and 
“scalar processing unit (SPU)”. It generates one result 
packet for each destination field as specified by the 
operation packet. 

UN; 

i FETCH 
UNIT 
I 

F@re 2: meersing Unit 

VECTOR PROCESSING UNIT: This unit (fig. 3) 
consists of a ‘ N  numbers of RPEs, Bitstream Memory 
Decoder/Controller (BMDC), BSMM and an 
interconnection network (ICN). 
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Control Unit: This unit performs the following 
operations in sequence. 
a) Read operation templates from OPQ, b) Detect 
instruction type (Scalar, Vector), c) Assign 
instruction (template) to the SPU or to the VPU 
depending on the type and d) Send result to UCU. 

i BWM lNTERFACE 

P i s 5  Ortboga~slMBaoty Intsconnetirm Newark 

3.MAPPING AN EDGE-DETECTION 
ALGORITHM TO DF-SIMD ARCHITECTURE 

One of the commonly employed edge-detection 
gradient is the Roberts gradient 131. It is generated by 
Roberts musks 

The Roberts gradient is given by 

At each pixel (i, j), assuming that all relevant gray 
values are defined, the outputs of two Roberts 
difference operators are 

[FILTER (f; Rl)](i,j) = f(i,j) - f(i-l,j+l) 
[FILTER (f; R2)](i,j) = f(i,j+l) - f(i-lj) and . 

Once the filtering has been accomplished, 
MAXNORM is applied to the resulting gradient vector 
to get ROBMAG. The figb describes the Data-Flow 
approach of ROBMAG. 

4. TIME ANALYSIS BETWEEN THE 
PROPOSED AND DSP BASED 

ARCHITECTURE: . 

The motivating factor behind the design of this 
architecture has been an effort to reduce the execution 
time of a given complex digital signal / image 
processing functions, to meet real time requirements. 

The time T t o t d - m ~ ~  required to execute one 
complex instruction on the proposed architecture using 
FPGAs is given as follows: 

T i o l a l - ~ ~ ~ ~  = tenable + bonfigation + kxecution +tco"unication 

t enable = time required by CU from recleiving the 
Operation packet to enabling the configuration 
process. 
t configatioll = time for configuring the WEs. By using 
the property of partial reconfigurability of the FPGAs 
this time can be made equal to zero. 
t execution = time required for actual execution of the 

function (propagation delay time + touting delay time) 
t c o m i c a t i o n  =time required for inter-processor 
communication. 

The corresponding time required in DSP processor 
based architecture is as follows: 

T ~ ~ ~ ~ I - D s P  = tinstmction issue + hecoding + texecution+t communication 

t instruction issue = time required to issue an SPI . 
t decoding = time required for decoding the instruction. 
t execution = time required for executing the high level 
instruction 
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t comicat ion  = time required for processor 
communication 

Of all these times, the most contributing factor is 
the execution time of the SPIs. 

Total time required by DSP based architecture to 
perform the above-mentioned ROBMAG Image 
Processing algorithm is, 
T~TAL-DsP-RoBMAG = 3* t TRANS-DW+4* t MINUS-DSP + 2*t ADD-DSP 

+ MAX-DSP 

Total time required by the proposed architecture to 
perform the same ROBMAG algorithm is, 
T ~ T ~ - ~ ~ R o B h % 4 G  = 3* t “ANS-DFStMD+4* MINUS-DFSWD + 

2*t ADD- DpSlMD + t MAX- DFSIMD 

If there are ’ N  number of RPEs in the SIMD machine 
the execution time of the SPIs (exploiting the spatial 
parallelism) 

Where K c: N due to the interprocess communication, 
but K > 1. 

This will be the case of all the basic SPIs required 
to execute the algorithm, but the factor ‘ K  will vary 
depending on the SPI. 
SO, T~TL-DSP-ROBMAG >> T~TAL-WROBMAG 

Thus the execution time of a DSP processor will 
be much more than the execution time of the algorithm 
in the proposed DF based architecture. 

t ~RANS-DFSIMD- (t ~ A N S - D S P )  1 K 

5. CONCLUSION 
The objective is to derive a hybrid Data Flow 

architecture to meet the real-time requirements for a 
class of image processing applications. The philosophy 
behind the performance enhancement is based on 
introducing “dynamically reconfigurable computing ” 
within the SIMD structure such that the execution of 
the signal processing functions can be performed at the 
speed of the hardware without losing the flexibility of 
the software. The architecture also overlaps the CU 
and RPE operation, thus reducing the CU idle time 
made possible by the partial reconfigurable property of 
FPGAs. Hence the architecture offers 1) Flexibility 2) 
Scalability 3) Flexible topology 4) PE Efficiency 5 )  
Scheduling and synchronization at the hardware level 
6) Efficient Utilization of Processing unit. 

As number of RPEs increase, large number of 
image blocks can be compressed concurrently. Various 
performance studies on speedup factor, 
communication overhead based on Block size Vs 
Number of RPEs, size of IQU and OPQ, are to be 
investigated. Here we have adapted Static Data Flow 
architecture, but Dynamic Data Flow architectures 
have also to be explored. 
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