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Abstract

In this paper, we present Brook for GPUs, a system
for general-purpose computation on programmable graphics
hardware. Brook extends C to include simple data-parallel
constructs, enabling the use of the GPU as a streaming co-
processor. We present a compiler and runtime system that
abstracts and virtualizes many aspects of graphics hardware.
In addition, we present an analysis of the effectiveness of the
GPU as a compute engine compared to the CPU, to deter-
mine when the GPU can outperform the CPU for a particu-
lar algorithm. We evaluate our system with five applications,
the SAXPY and SGEMV BLAS operators, image segmen-
tation, FFT, and ray tracing. For these applications, we
demonstrate that our Brook implementations perform com-
parably to hand-written GPU code and up to seven times
faster than their CPU counterparts.

CR Categories: I.3.1 [Computer Graphics]: Hard-
ware Architecture—Graphics processors D.3.2 [Program-
ming Languages]: Language Classifications—Parallel Lan-
guages

Keywords: Programmable Graphics Hardware, Data
Parallel Computing, Stream Computing, GPU Computing,
Brook

1 Introduction

In recent years, commodity graphics hardware has rapidly
evolved from being a fixed-function pipeline into having pro-
grammable vertex and fragment processors. While this new
programmability was introduced for real-time shading, it has
been observed that these processors feature instruction sets
general enough to perform computation beyond the domain
of rendering. Applications such as linear algebra [Krüger
and Westermann 2003], physical simulation, [Harris et al.
2003], and a complete ray tracer [Purcell et al. 2002; Carr
et al. 2002] have been demonstrated to run on GPUs.

Originally, GPUs could only be programmed using as-
sembly languages. Microsoft’s HLSL, NVIDIA’s Cg, and
OpenGL’s GLslang allow shaders to be written in a high
level, C-like programming language [Microsoft 2003; Mark
et al. 2003; Kessenich et al. 2003]. However, these lan-
guages do not assist the programmer in controlling other
aspects of the graphics pipeline, such as allocating texture
memory, loading shader programs, or constructing graphics
primitives. As a result, the implementation of applications
requires extensive knowledge of the latest graphics APIs as
well as an understanding of the features and limitations of

modern hardware. In addition, the user is forced to ex-
press their algorithm in terms of graphics primitives, such
as textures and triangles. As a result, general-purpose GPU
computing is limited to only the most advanced graphics
developers.

This paper presents Brook, a programming environment
that provides developers with a view of the GPU as a stream-
ing coprocessor. The main contributions of this paper are:

• The presentation of the Brook stream programming
model for general-purpose GPU computing. Through
the use of streams, kernels and reduction operators,
Brook abstracts the GPU as a streaming processor.

• The demonstration of how various GPU hardware lim-
itations can be virtualized or extended using our com-
piler and runtime system; specifically, the GPU mem-
ory system, the number of supported shader outputs,
and support for user-defined data structures.

• The presentation of a cost model for comparing GPU
vs. CPU performance tradeoffs to better understand
under what circumstances the GPU outperforms the
CPU.

2 Background

2.1 Evolution of Streaming Hardware

Programmable graphics hardware dates back to the origi-
nal programmable framebuffer architectures [England 1986].
One of the most influential programmable graphics systems
was the UNC PixelPlanes series [Fuchs et al. 1989] culmi-
nating in the PixelFlow machine [Molnar et al. 1992]. These
systems embedded pixel processors, running as a SIMD pro-
cessor, on the same chip as framebuffer memory. Peercy et
al. [2000] demonstrated how the OpenGL architecture [Woo
et al. 1999] can be abstracted as a SIMD processor. Each
rendering pass implements a SIMD instruction that per-
forms a basic arithmetic operation and updates the frame-
buffer atomically. Using this abstraction, they were able
to compile RenderMan to OpenGL 1.2 with imaging exten-
sions. Thompson et al. [2002] explored the use of GPUs as
a general-purpose vector processor by implementing a soft-
ware layer on top of the graphics library that performed
arithmetic computation on arrays of floating point numbers.

SIMD and vector processing operators involve a read, an
execution of a single instruction, and a write to off-chip mem-
ory [Russell 1978; Kozyrakis 1999]. This results in signifi-
cant memory bandwidth use. Today’s graphics hardware
executes small programs where instructions load and store
data to local temporary registers rather than to memory.
This is a major difference between the vector and stream
processor abstraction [Khailany et al. 2001].

The stream programming model captures computational
locality not present in the SIMD or vector models through
the use of streams and kernels. A stream is a collection
of records requiring similar computation while kernels are
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Figure 1: Programming model for current programmable
graphics hardware. A shader program operates on a single
input element (vertex or fragment) stored in the input regis-
ters and writes the execution result into the output registers.

functions applied to each element of a stream. A streaming
processor executes a kernel over all elements of an input
stream, placing the results into an output stream. Dally
et al. [2003] explain how stream programming encourages
the creation of applications with high arithmetic intensity,
the ratio of arithmetic operations to memory bandwidth.
This paper defines a similar property called computational
intensity to compare CPU and GPU performance.

Stream architectures are a topic of great interest in com-
puter architecture [Bove and Watlington 1995; Gokhale and
Gomersall 1997]. For example, the Imagine stream processor
[Kapasi et al. 2002] demonstrated the effectiveness of stream-
ing for a wide range of media applications, including graph-
ics and imaging [Owens et al. 2000]. The StreamC/KernelC
programming environment provides an abstraction which al-
lows programmers to map applications to the Imagine pro-
cessor [Mattson 2002]. Labonte et al. [2004] studied the ef-
fectiveness of GPUs as stream processors by evaluating the
performance of a streaming virtual machine mapped onto
graphics hardware. The programming model presented in
this paper could easily be compiled to their virtual machine.

2.2 Programming Graphics Hardware

Modern programmable graphics accelerators such as the
ATI X800XT and the NVIDIA GeForce 6800 [ATI 2004b;
NVIDIA 2004] feature programmable vertex and frag-
ment processors. Each processor executes a user-specified
assembly-level shader program consisting of 4-way SIMD
instructions [Lindholm et al. 2001]. These instructions in-
clude standard math operations, such as 3- or 4-component
dot products, texture-fetch instructions, and a few special-
purpose instructions.

The basic execution model of a GPU is shown in figure 1.
For every vertex or fragment to be processed, the graphics
hardware places a graphics primitive in the read-only input
registers. The shader is then executed and the results writ-
ten to the output registers. During execution, the shader
has access to a number of temporary registers as well as
constants set by the host application.

Purcell et al. [2002] describe how the GPU can be con-
sidered a streaming processor that executes kernels, written
as fragment or vertex shaders, on streams of data stored in

geometry and textures. Kernels can be written using a va-
riety of high-level, C-like languages such as Cg, HLSL, and
GLslang. However, even with these languages, applications
must still execute explicit graphics API calls to organize data
into streams and invoke kernels. For example, stream man-
agement is performed by the programmer, requiring data
to be manually packed into textures and transferred to and
from the hardware. Kernel invocation requires the loading
and binding of shader programs and the rendering of ge-
ometry. As a result, computation is not expressed as a set
of kernels acting upon streams, but rather as a sequence of
shading operations on graphics primitives. Even for those
proficient in graphics programming, expressing algorithms
in this way can be an arduous task.

These languages also fail to virtualize constraints of the
underlying hardware. For example, stream elements are
limited to natively-supported float, float2, float3, and
float4 types, rather than allowing more complex user-
defined structures. In addition, programmers must always
be aware of hardware limitations such as shader instruction
count, number of shader outputs, and texture sizes. There
has been some work in shading languages to alleviate some of
these constraints. Chan et al. [2002] present an algorithm to
subdivide large shaders automatically into smaller shaders
to circumvent shader length and input constraints, but do
not explore multiple shader outputs. McCool et al. [2002;
2004] have developed Sh, a system that allows shaders to be
defined and executed using a metaprogramming language
built on top of C++. Sh is intended primarily as a shading
system, though it has been shown to perform other types of
computation. However, it does not provide some of the basic
operations common in general purpose computing, such as
gathers and reductions.

In general, code written today to perform computation
on GPUs is developed in a highly graphics-centric environ-
ment, posing difficulties for those attempting to map other
applications onto graphics hardware.

3 Brook Stream Programming Model

Brook was a developed as a language for streaming proces-
sors such as Stanford’s Merrimac streaming supercomputer
[Dally et al. 2003], the Imagine processor [Kapasi et al. 2002],
the UT Austin TRIPS processor [Sankaralingam et al. 2003],
and the MIT Raw processor [Taylor et al. 2002]. We have
adapted Brook to the capabilities of graphics hardware, and
will only discuss Brook in the context of GPU architectures
in this paper. The design goals of the language include:

• Data Parallelism and Arithmetic Intensity

By providing native support for streams, Brook allows
programmers to express the data parallelism that exists
in their applications. Arithmetic intensity is improved
by performing computations in kernels.

• Portability and Performance

In addition to GPUs, the Brook language maps to a
variety of streaming architectures. Therefore the lan-
guage is free of any explicit graphics constructs. We
have created Brook implementations for both NVIDIA
and ATI hardware, using both DirectX and OpenGL,
as well as a CPU reference implementation. Despite the
need to maintain portability, Brook programs execute
efficiently on the underlying hardware.
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In comparison with existing high-level languages used for
GPU programming, Brook provides the following abstrac-
tions.

• Memory is managed via streams: named, typed,
and “shaped” data objects consisting of collections of
records.

• Data-parallel operations executed on the GPU are spec-
ified as calls to parallel functions called kernels.

• Many-to-one reductions on stream elements are per-
formed in parallel by reduction functions.

Important features of the Brook language are discussed in
the following sections.

3.1 Streams

A stream is a collection of data which can be operated on
in parallel. Streams are declared with angle-bracket syntax
similar to arrays, i.e. float s<10,5> which denotes a 2-
dimensional stream of floats. Each stream is made up of
elements. In this example, s is a stream consisting of 50
elements of type float. The shape of the stream refers to its
dimensionality. In this example, s is a stream of shape 10
by 5. Streams are similar to C arrays, however, access to
stream data is restricted to kernels (described below) and
the streamRead and streamWrite operators, that transfer
data between memory and streams.

Streams may contain elements of type float, Cg vector
types such as float2, float3, and float4, and structures
composed of these native types. For example, a stream of
rays can be defined as:

typedef struct ray_t {
float3 o;
float3 d;
float tmax;

} Ray;
Ray r<100>;

Support for user-defined memory types, though common in
general-purpose languages, is a feature not found in today’s
graphics APIs. Brook provides the user with the convenience
of complex data structures and compile-time type checking.

3.2 Kernels

Brook kernels are special functions, specified by the kernel
keyword, which operate on streams. Calling a kernel on a
stream performs an implicit loop over the elements of the
stream, invoking the body of the kernel for each element.
An example kernel is shown below.

kernel void saxpy (float a, float4 x<>, float4 y<>,
out float4 result<>) {

result = a*x + y;
}

void main (void) {
float a;
float4 X[100], Y[100], Result[100];
float4 x<100>, y<100>, result<100>;
... initialize a, X, Y ...
streamRead(x, X); // copy data from mem to stream
streamRead(y, Y);
saxpy(a, x, y, result); // execute kernel on all elements
streamWrite(result, Result); // copy data from stream to mem

}

Kernels accept several types of arguments:

• Input streams that contain read-only data for kernel
processing.

• Output streams, specified by the out keyword, that
store the result of the kernel computation. Brook im-
poses no limit to the number of output streams a kernel
may have.

• Gather streams, specified by the C array syntax
(array[]): Gather streams permit arbitrary indexing
to retrieve stream elements. In a kernel, elements are
fetched, or “gathered”, via the array index operator, i.e.
array[i]. Like regular input streams, gather streams
are read-only.

• All non-stream arguments are read-only constants.

If a kernel is called with input and output streams of dif-
fering shape, Brook implicitly resizes each input stream to
match the shape of the output. This is done by either re-
peating (123 to 111222333) or striding (123456789 to 13579)
elements in each dimension.

Certain restrictions are placed on kernels to allow data-
parallel execution. Memory access is limited to reads from
gather streams, similar to a texture fetch. Operations that
may introduce side-effects between stream elements, such as
writing static or global variables, are not allowed in kernels.
Streams are allowed to be both input and output arguments
to the same kernel (in-place computation) provided they are
not also used as gather streams in the kernel.

A sample kernel which computes a ray-triangle intersec-
tion is shown below.

kernel void krnIntersectTriangle(Ray ray<>, Triangle tris[],
RayState oldraystate<>,
GridTrilist trilist[],
out Hit candidatehit<>) {

float idx, det, inv_det;
float3 edge1, edge2, pvec, tvec, qvec;
if(oldraystate.state.y > 0) {

idx = trilist[oldraystate.state.w].trinum;
edge1 = tris[idx].v1 - tris[idx].v0;
edge2 = tris[idx].v2 - tris[idx].v0;
pvec = cross(ray.d, edge2);
det = dot(edge1, pvec);
inv_det = 1.0f/det;
tvec = ray.o - tris[idx].v0;
candidatehit.data.y = dot( tvec, pvec ) * inv_det;
qvec = cross( tvec, edge1 );
candidatehit.data.z = dot( ray.d, qvec ) * inv_det;
candidatehit.data.x = dot( edge2, qvec ) * inv_det;
candidatehit.data.w = idx;

} else {
candidatehit.data = float4(0,0,0,-1);

}
}

Brook forces the programmer to distinguish between data
streamed to a kernel as an input stream and that which is
gathered by the kernel using array access. This distinction
permits the system to manage these streams differently. In-
put stream elements are accessed in a regular pattern but
are never reused, since each kernel body invocation operates
on a different stream element. Gather streams may be ac-
cessed randomly, and elements may be reused. As Purcell
et al. [2002] observed, today’s graphics hardware makes no
distinction between these two memory-access types. As a re-
sult, input stream data can pollute a traditional cache and
penalize locality in gather operations.

The use of kernels differentiates stream programming from
vector programming. Kernels perform arbitrary function
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evaluation whereas vector operators consist of simple math
operations. Vector operations always require temporaries
to be read and written to a large vector register file. In
contrast, kernels capture additional locality by storing tem-
poraries in local register storage. By reducing bandwidth
to main memory, arithmetic intensity is increased since only
the final result of the kernel computation is written back to
memory.

3.3 Reductions

While kernels provide a mechanism for applying a function
to a set of data, reductions provide a data-parallel method
for calculating a single value from a set of records. Examples
of reduction operations include arithmetic sum, computing
a maximum, and matrix product. In order to perform the
reduction in parallel, we require the reduction operation to
be associative: (a◦ b)◦ c = a◦ (b◦ c). This allows the system
to evaluate the reduction in whichever order is best suited
for the underlying architecture.

Reductions accept a single input stream and produce as
output either a smaller stream of the same type, or a single-
element value. Outputs for reductions are specified with the
reduce keyword. Both reading and writing to the reduce
parameter are allowed when computing the reduction of the
two values.

If the output argument to a reduction is a single element,
it will receive the reduced value of all of the input stream’s
elements. If the argument is a stream, the shape of the
input and output streams is used to determine how many
neighboring elements of the input are reduced to produce
each element of the output.

The example below demonstrates how stream-to-stream
reductions can be used to perform the matrix-vector multi-
plication y = Ax.

kernel void mul (float a<>, float b<>, out float c<>) {
c = a * b;

}
reduce void sum (float a<>, reduce float r<>) {

r += a;
}

float A<50,50>;
float x<1,50>;
float T<50,50>;
float y<50,1>;
...
mul(A,x,T);
sum(T,y);

In this example, we first multiply A by x with the mul kernel.
Since x is smaller than T in the first dimension, the elements
of x are repeated in that dimension to create a matrix of
equal size of T. The sum reduction then reduces rows of T
because of the difference in size of the second dimension of
T and y.

3.4 Additional language features

In this section, we present additional Brook language fea-
tures which should be mentioned but will not be discussed
further in this paper. Readers who are interested in more
details are encouraged to read [Buck 2004].

• The indexof operator may be called on an input or
output stream inside a kernel to obtain the position of
the current element within the stream.

• Iterator streams are streams containing pre-initialized
sequential values specified by the user. Iterators are
useful for generating streams of sequences of numbers.

• The Brook language specification also provides a col-
lection of high-level stream operators useful for manip-
ulating and reorganizing stream data, such as grouping
elements into new streams and extracting subregions
of streams and explicit operators to stride, repeat, and
wrap streams. These operators can be implemented on
the GPU through the use of iterator streams and gather
operations. Their use is important on streaming plat-
forms which do not support gather operations inside
kernels.

• The Brook language provides parallel indirect read-
modify-write operators called ScatterOp and GatherOp
which are useful for building and manipulating data
structures contained within streams. However, due to
GPU hardware limitations, we currently perform these
operations on the CPU.

4 Implementation on Graphics Hardware

The Brook compilation and runtime system maps the Brook
language onto existing programmable GPU APIs. The sys-
tem consists of two components: brcc, a source-to-source
compiler, and the Brook Runtime (BRT), a library that pro-
vides runtime support for kernel execution. The compiler is
based on cTool [Flisakowski 2004], an open-source C parser,
which was modified to support Brook language primitives.
The compiler maps Brook kernels into Cg shaders which are
translated by vendor-provided shader compilers into GPU
assembly. Additionally, brcc emits C++ code which uses
the BRT to invoke the kernels. Appendix A provides a
before-and-after example of a compiled kernel.

BRT is an architecture-independent software layer which
provides a common interface for each of the backends sup-
ported by the compiler. Brook currently supports three
backends; an OpenGL and DirectX backend and a reference
CPU implementation. Creating a cross-platform implemen-
tation provides three main benefits. First, we demonstrate
the portability of the language by allowing the user to choose
the best backend for the hardware. Secondly, we can com-
pare the performance of the different graphics APIs for GPU
computing. Finally, we can optimize for API-specific fea-
tures, such as OpenGL’s support of 0 to n texture addressing
and DirectX’s direct render-to-texture functionality.

The following sections describe how Brook maps the
stream, kernel, and reduction language primitives onto the
GPU.

4.1 Streams

Brook represents streams as floating point textures on
the graphics hardware. With this representation, the
streamRead and streamWrite operators upload and down-
load texture data, gather operations are expressed as depen-
dent texture reads, and the implicit repeat and stride op-
erators are achieved with texture sampling. Current graph-
ics APIs, however, only provide float, float2, float3 and
float4 texture formats. To support streams of user-defined
structures, BRT stores each member of a structure in a dif-
ferent hardware texture.

Many application writers may wish to visualize the result
of a Brook computation. The BRT provides a C++ inter-
face which allows the user to bind Brook streams as native
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graphics API textures which can be interactively rendered
in a traditional graphics application. This option requires
that Brook make streams available in a fixed, documented
texture layout. By default, streams are stored as a texture
with the same dimensions as the stream shape.

A greater challenge is posed by the hardware limitations
on texture size and shape. Floating-point textures are lim-
ited to two dimensions, and a maximum size of 4096 by 4096
on NVIDIA and 2048 by 2048 on ATI hardware. If we di-
rectly map stream shape to texture shape, then Brook pro-
grams can not create streams of more than two dimensions
or 1D streams of more than 2048 or 4096 elements.

To address this limitation, brcc provides a compiler op-
tion to wrap the stream data across multiple rows of a tex-
ture. This permits arbitrary-sized streams assuming the to-
tal number of elements fits within a single texture. In order
to access an element by its location in the stream, brcc in-
serts code to convert between the stream location and the
corresponding texture coordinates. The Cg code shown be-
low is used for stream-to-texture address translation and al-
lows for streams of up to four dimensions containing as many
elements as texels in a maximum sized 2D texture.

float2 __calculatetexpos( float4 streamIndex,
float4 linearizeConst, float2 reshapeConst ) {

float linearIndex = dot( streamIndex, linearizeConst );
float texX = frac( linearIndex );
float texY = linearIndex - texX;
return float2( texX, texY ) * reshapeConst;

}

Our address-translation implementation is limited by the
precision available in the graphics hardware. In calculat-
ing a texture coordinate from a stream position, we con-
vert the position to a scaled integer index. If the unscaled
index exceeds the largest representable sequential integer
in the graphics card’s floating-point format (16,777,216 for
NVIDIA’s s23e8 format, 131,072 for ATI’s 24-bit s16e7 for-
mat) then there is not sufficient precision to uniquely address
the correct stream element. For example, our implementa-
tion effectively increases the maximum 1D stream size for
a portable Brook program from 2048 to 131072 elements
on ATI hardware. Ultimately, these limitations in texture
addressing point to the need for a more general memory ad-
dressing model in future GPUs.

4.2 Kernels

With stream data stored in textures, Brook uses the GPU’s
fragment processor to execute a kernel function over the
stream elements. brcc compiles the body of a kernel into
a Cg shader. Stream arguments are initialized from tex-
tures, gather operations are replaced with texture fetches,
and non-stream arguments are passed via constant registers.
The NVIDIA or Microsoft shader compiler is then applied
to the resulting Cg code to produce GPU assembly.

To execute a kernel, the BRT issues a single quad contain-
ing the same number of fragments as elements in the output
stream. The kernel outputs are rendered into the current
render targets. The DirectX backend renders directly into
the textures containing output stream data. OpenGL, how-
ever, does not provide a lightweight mechanism for bind-
ing textures as render targets. OpenGL Pbuffers provide
this functionality, however, as Bolz et al.[2003] discovered,
switching between render targets with Pbuffers can have
significant performance penalties. Therefore, our OpenGL
backend renders to a single floating-point Pbuffer and copies
the results to the output stream’s texture. The proposed

Program Instructions MFLOPS Slowdown
texld arith

Mat4Mult4 8 16 3611
Mat4Mult1 20 16 1683 53%
Cloth4 6 54 5086
Cloth1 12 102 2666 47%

Table 1: This table demonstrates the performance cost of
splitting kernels which contain more outputs than supported
by the hardware. Included are the instruction counts and ob-
served performance of the matrix multiply and cloth kernels
executing on both 4-output hardware and 1-output hard-
ware using the NVIDIA DirectX backend. The slowdown is
the relative drop in performance of the non-multiple output
implementation.

Superbuffer specification [Percy 2003], which permits di-
rect render-to-texture functionality under OpenGL, should
alleviate this restriction.

The task of mapping kernels to fragment shaders is com-
plicated by the limited number of shader outputs available in
today’s hardware. When a kernel uses more output streams
than are supported by the hardware (or uses an output
stream of structure type), brcc splits the kernel into multiple
passes in order to compute all of the outputs. For each pass,
the compiler produces a complete copy of the kernel code,
but only assigns a subset of the kernel outputs to shader out-
puts. We take advantage of the aggressive dead-code elimi-
nation performed by today’s shader compilers to remove any
computation that does not contribute to the outputs written
in that pass.

To test the effectiveness of our pass-splitting technique,
we applied it to two kernels: Mat4Mult, which multiplies
two streams of 4x4 matrices, producing a single 4x4 ma-
trix (4 float4s) output stream; and Cloth, which simulates
particle-based cloth with spring constraints, producing up-
dated particle positions and velocities. We tested two ver-
sions of each kernel. Mat4Mult4 and Cloth4 were compiled
with hardware support for 4 float4 outputs, requiring only
a single pass to complete. The Mat4Mult1 and Cloth1 were
compiled for hardware with only a single output, forcing the
runtime to generate separate shaders for each output.

As shown in Table 1, the effectiveness of this technique
depends on the amount of shared computation between ker-
nel outputs. For the Mat4Mult kernel, the computation can
be cleanly separated for each output, and the shader com-
piler correctly identified that each row of the output matrix
can be computed independently. Therefore, the total num-
ber of arithmetic operations required to compute the result
does not differ between the 4-output and 1-output versions.
However, the total number of texture loads does increase
since each pass must load all 16 elements of one of the in-
put matrices. For the Cloth kernel, the position and veloc-
ity outputs share much of the kernel code (a force calcula-
tion) which must be repeated if the outputs are to be com-
puted in separate shaders. Thus, there are nearly twice as
many instructions in the 1-output version as in the 4-output
version. Both applications perform better with multiple-
output support, demonstrating that our system efficiently
utilizes multiple-output hardware, while transparently scal-
ing to systems with only single-output support.

4.3 Reductions

Current graphics hardware does not have native support
for reductions. BRT implements reduction via a multipass
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FFT Segment Ray Tracer
Edge Detect Lung CT Glassner

Figure 2: These images were created using the Brook appli-
cations FFT, Segment, and Ray Tracer

method similar to Kruger and Westermann [2003]. The re-
duction is performed in O(log n) passes, where n is the ratio
of the sizes of the input and output streams. For each pass,
the reduce operation reads up to 8 adjacent stream elements,
and outputs their reduced values. Since each pass produces
between 2 and 8 fewer values, Brook reductions are a linear-
time computation. The specific size of each reduction pass
is a function of the size of the stream and reduction kernel.

We have benchmarked computing the sum of 220 float4
elements as taking 2.4 and .79 milliseconds, respectively, on
our NVIDIA and ATI DirectX backends and 4.1 and 1.3
milliseconds on the OpenGL backends. An optimized CPU
implementation performed this reduction in 14.6 millisec-
onds. The performance difference between the DirectX and
OpenGL implementations is largely due to the cost of copy-
ing results from the output Pbuffer to a texture, as described
above.

With our multipass implementation of reduction, the
GPU must access significantly more memory than an op-
timized CPU implementation to reduce a stream. If graph-
ics hardware provided a persistent register that could accu-
mulate results across multiple fragments, we could reduce
a stream to a single value in one pass. We simulated the
performance of graphics hardware with this theoretical ca-
pability by measuring the time it takes to execute a kernel
that reads a single stream element, adds it to a constant
and issues a fragment kill to prevent any write operations.
Benchmarking this kernel with DirectX on the same stream
as above yields theoretical reduction times of .41 and .18
milliseconds on NVIDIA and ATI hardware respectively.

5 Evaluation and Applications

We now examine the performance of several scientific appli-
cations on GPUs using Brook. For each test, we evaluated
Brook using the OpenGL and DirectX backends on both an
ATI Radeon X800 XT Platinum running version 4.4 drivers
and a pre-release1 NVIDIA GeForce 6800 running version
60.80 drivers, both running Windows XP. For our CPU com-
parisons, we used a 3 GHz Intel Pentium 4 processor with
an Intel 875P chipset running Windows XP, unless otherwise
noted.

5.1 Applications

We implemented an assortment of algorithms in Brook. The
following applications were chosen for three reasons: they are
representative of different types of algorithms performed in
numerical applications; they are important algorithms used

1Running 350MHz core and 500Mhz memory

widely both in computer graphics and general scientific com-
puting; optimized CPU- or GPU-based implementations are
available to make performance comparisons with our imple-
mentations in Brook.

BLAS SAXPY and SGEMV routines: The BLAS (Basic
Linear Algebra Subprograms) library is a collection of low-
level linear algebra subroutines [Lawson et al. 1979]. SAXPY
performs the vector scale and sum operation, y = ax + y,
where x and y are vectors and a is a scalar. SGEMV is a
single-precision dense matrix-vector product followed by a
scaled vector add, y = αAx + βy, where x, y are vectors, A
is a matrix and α, β are scalars. Matrix-vector operations
are critical in many numerical applications, and the double-
precision variant of SAXPY is a core computation kernel em-
ployed by the LINPACK Top500 benchmark [2004] used to
rank the top supercomputers in the world. We compare our
performance against that of the optimized commercial Intel
Math Kernel Library[Intel 2004] for SAXPY and the AT-
LAS BLAS library[Whaley et al. 2001] for SGEMV, which
were the fastest public CPU implementations we were able
to locate. For a reference GPU comparison, we implemented
a hand-optimized DirectX version of SAXPY and an opti-
mized OpenGL SGEMV implementation. For these tests,
we use vectors or matrices of size 10242.

Segment performs a 2D version of the Perona and Ma-
lik [1990] nonlinear, diffusion-based, seeded, region-growing
algorithm, as presented in Sherbondy et al. [2003], on a
2048 by 2048 image. Segmentation is widely used for medi-
cal image processing and digital compositing. We compare
our Brook implementation against hand-coded OpenGL and
CPU implementations executed on our test systems. Each
iteration of the segmentation evolution kernel requires 32
floating point operations, reads 10 floats as input and writes
2 floats as output. The optimized CPU implementation
is specifically tuned to perform a maximally cache-friendly
computation on the Pentium 4.

FFT: Our Fourier transform application performs a 2D
Cooley-Tukey fast Fourier transform (FFT) [1965] on a 4
channel 1024 by 1024 complex signal. The fast Fourier
transform algorithm is important in many graphical applica-
tions, such as post-processing of images in the framebuffer,
as well as scientific applications such as the SETI@home
project [Sullivan et al. 1997]. Our implementation uses three
kernels: a horizontal and vertical 1D FFT, each called 10
times, and a bit reversal kernel called once. The horizon-
tal and vertical FFT kernels each perform 5 floating-point
operations per output value. The total floating point opera-
tions performed, based on the benchFFT [Frigo and Johnson
2003] project, is equal to 5 · w · h · channels·log2(w · h). To
benchmark Brook against a competitive GPU algorithm, we
compare our results with the custom OpenGL implementa-
tion available from ATI at [ATI 2004a]. To compare against
the CPU, we benchmark the heavily optimized FFTW-3
software library compiled with the Intel C++ compiler [IN-
TEL 2003].

Ray is a simplified version of the GPU ray tracer presented
in Purcell et al. [2002]. This application consists of three ker-
nels, ray setup, ray-triangle intersection (shown in section 3),
and shading. For a CPU comparison, we compare against
the published results of Wald’s [2004] hand-optimized as-
sembly which can achieve up to 100M rays per second on a
Pentium 4 3.0GHz processor.
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Figure 3: Comparing the relative performance of our test
applications between a reference GPU version, a Brook Di-
rectX and OpenGL version, and an optimized CPU version.
Results for ATI are shown in red, NVIDIA are shown in
green. The bar graph is normalized by the CPU perfor-
mance as shown by the dotted line. The table lists the ob-
served MFLOPS for each application. For the ray tracer, we
list the ray-triangle test rate.

Figure 3 provides a breakdown of the performance of our
various test applications. We show the performance of each
application running on ATI (shown in red), NVIDIA (green),
and the CPU (black). For each GPU platform, the three
bars show the performance of the reference native GPU im-
plementation and the Brook version executing with the Di-
rectX and OpenGL backends. The results are normalized
by the CPU performance. The table provides the effective
MFLOPS observed based on the floating point operations as
specified in the original source. For the ray tracing code, we
report ray-triangle tests per second. In all of these results,
we do not include the streamRead and streamWrite costs.

We observe that the GPU implementations perform well
against their CPU counterparts. The Brook DirectX ATI
versions of SAXPY and Segment performed roughly 7 and
4.7 times faster than the equivalent CPU implementations.
SAXPY illustrates that even a kernel executing only a sin-
gle MAD instruction is able to out-perform the CPU due
to the additional internal bandwidth available on the GPU.
FFT was our poorest performing application relative to the
CPU. The Brook implementation is only .99 the speed of the
CPU version. FFTW blocks the memory accesses to make
very efficient use of the processor cache. (Without this opti-
mization, the effective CPU MFLOPS drops to from 1224 to
204.) Despite this blocking, Brook is able to roughly match
the performance of the CPU.

We can also compare the relative performance of the Di-
rectX and the OpenGL backends. DirectX is within 80% of
the performance of the hand-coded GPU implementations.
The OpenGL backend however is much less efficient com-
pared to the reference implementations. This was largely
due to the need to copy the output data from the OpenGL
pbuffer into a texture (refer to 4.2). This is particularly
evident with SGEMV test which must perform a multipass
reduction operation. The hand coded versions use applica-

tion specific knowledge to avoid this copy.
We observe that, for these applications, ATI generally

performs better than NVIDIA. We believe this may be due
to higher floating point texture bandwidth on ATI. We ob-
serve 1.2 Gfloats/sec of floating point texture bandwidth on
NVIDIA compared to ATI’s 4.5 Gfloats/sec, while the peak,
observable compute performance favors NVIDIA with 40 bil-
lion multiplies per second versus ATI’s 33 billion.

In some cases, our Brook implementations outperform the
reference GPU implementations. For the NVIDIA FFT re-
sults, Brook performs better than the reference OpenGL
FFT code provided by ATI. We also outperform Moreland
and Angel’s NVIDIA specific implementation [2003] by the
same margin. A similar trend is shown with SGEMV, where
the DirectX Brook implementation outperforms hand-coded
OpenGL. We assume these differences are due to the relative
performance of the DirectX and OpenGL drivers.

These applications provide perspective on the perfor-
mance of general-purpose computing on the GPU using
Brook. The performance numbers do not, however, include
the cost of streamRead and streamWrite operations to trans-
fer the initial and final data to and from the GPU which can
significantly affect the total performance of an application.
The following section explores how this overhead affects per-
formance and investigates the conditions under which the
overall performance using the GPU exceeds that of the CPU.

5.2 Modeling Performance

The general structure of many Brook applications consists
of copying data to the GPU with streamRead, performing
a sequence of kernel calls, and copying the result back to
the CPU with streamWrite. Executing the same computa-
tion on the CPU does not require these extra data transfer
operations. Considering the cost of the transfer can affect
whether the GPU will outperform the CPU for a particular
algorithm.

To study this effect, we consider a program which down-
loads n records to the GPU, executes a kernel on all n
records, and reads back the results. The time taken to per-
form this operation on the GPU and CPU is:

Tgpu = n(Tr + Kgpu)

Tcpu = nKcpu

where Tgpu and Tcpu are the running times on the GPU and
CPU respectively, Tr is the transfer time associated with
downloading and reading back a single record, and Kgpu

and Kcpu are the times required to execute a given kernel
on a single record. This simple execution time model as-
sumes that at peak, kernel execution time and data transfer
speed are linear in the total number of elements processed
/ transferred. The GPU will outperform the CPU when
Tgpu < Tcpu. Using this relationship, we can show that:

Tr < Kcpu − Kgpu

As shown by this relation, the performance benefit of execut-
ing the kernel on the GPU (Kcpu −Kgpu) must be sufficient
to hide the data transfer cost (Tr).

From this analysis, we can make a few basic conclusions
about the types of algorithms which will benefit from exe-
cuting on the GPU. First, the relative performance of the
two platforms is clearly significant. The speedup is defined
as time to execute a kernel on the CPU relative to the GPU,
s ≡ Kcpu/Kgpu. The greater the speedup for a given kernel,
the more likely it will perform better on the GPU. Secondly,
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Figure 4: The average cost of a kernel call for various stream
lengths with our synthetic kernel. At small sizes, the fixed
CPU cost to issue the kernel dominates total execution time.
The stair-stepping is assumed to be an artifact of the ras-
terizer.

an algorithm which performs a significant amount of compu-
tation relative to the time spent transferring data is likely to
be dominated by the computation time. This relationship is
the computational intensity, γ ≡ Kgpu/Tr, of the algorithm.
The higher the computational intensity of an algorithm, the
better suited it is for computing on the GPU. By substitut-
ing into the above relation, we can derive the relationship
between speedup and computational intensity.

γ >
1

s − 1

The idea of computational intensity is similar to arith-
metic intensity, defined by Dally et al. [2003] to be the num-
ber of floating point operations per word read in a kernel.
Computational intensity differs in that it considers the en-
tire cost of executing an algorithm on a device versus the
cost of transferring the data set to and from the device.
Computational intensity is quite relevant to the GPU which
generally does not operate in the same address space as the
host processor.

For our cost model, we assume that the parameters Kgpu

and Tr are independent of the number of stream elements
n. In reality, we find this generally not to be the case for
short streams. GPUs are more efficient at transferring data
in mid to large sized amounts. More importantly, there is
overhead associated with issuing a kernel. Every kernel invo-
cation incurs a certain fixed amount of CPU time to setup
and issue the kernel on the GPU. With multiple back-to-
back kernel calls, this setup cost on the CPU can overlap
with kernel execution on the GPU. For kernels operating on
large streams, the GPU will be the limiting factor. How-
ever, for kernels which operate on short streams, the CPU
may not be able to issue kernels fast enough to keep the GPU
busy. Figure 4 shows the average execution time of 1,000 it-
erations of a synthetic kernel with the respective runtimes.
As expected, both runtimes show a clear knee where issuing
and running a kernel transitions from being limited by CPU
setup to being limited by the GPU kernel execution. For our
synthetic application which executes 43 MAD instructions,
the ATI runtime crosses above the knee when executing over
750K and 2M floating point operations and NVIDIA crosses
around 650K floating point operations for both OpenGL and
DirectX.

Our analysis shows that there are two key application
properties necessary for effective utilization of the GPU.
First, in order to outperform the CPU, the amount of work
performed must overcome the transfer costs which is a func-
tion of the computational intensity of the algorithm and the
speedup of the hardware. Second, the amount of work done
per kernel call should be large enough to hide the setup
cost required to issue the kernel. We anticipate that while
the specific numbers may vary with newer hardware, the
computational intensity, speedup, and kernel overhead will
continue to dictate effective GPU utilization.

6 Discussion

Our computational intensity analysis demonstrated that
read/write bandwidth is important for establishing the types
of applications that perform well on the GPU. Ideally, fu-
ture GPUs will perform the read and write operations asyn-
chronously with the computation. This solution changes the
GPU execution time to be max of Tr and Kgpu, a much more
favorable expression. It is also possible that future streaming
hardware will share the same memory as the CPU, eliminat-
ing the need for data transfer altogether.

Virtualization of hardware constraints can also bring the
GPU closer to a streaming processor. Brook virtualizes two
aspects which are critical to stream computing, the number
of kernel outputs and stream dimensions and size. Multi-
ple output compilation could be improved by searching the
space of possible ways to divide up the kernel computation
to produce the desired outputs, similar to a generalization
of RDS algorithm proposed by Chan et al.[2002]. This same
algorithm would virtualize the number of input arguments
as well as total instruction count. We have begun incorpo-
rating such an algorithm into brcc with promising results.

In addition, several features of Brook should be consid-
ered for future streaming GPU hardware. Variable outputs
allow a kernel to conditionally output zero or more data for
each input. Variable outputs are useful for applications that
exhibit data amplification, e.g. tessellation, as well as ap-
plications which operate on selected portions of input data.
We are currently studying these applications and adding this
capability into Brook through a multipass algorithm. It is
conceivable that future hardware could be extended to in-
clude this functionality thus enabling entirely new classes
of streaming applications. Secondly, stream computing on
GPUs will benefit greatly from the recent addition of ver-
tex textures and floating point blending operations. With
these capabilities, we can implement Brook’s parallel indi-
rect read-modify-write operators, ScatterOp and GatherOp,
which are useful for working with and building data struc-
tures stored in streams. One feature which GPUs support
that we would like to expose in Brook is the ability to pred-
icate kernel computation. For example, Purcell et al. [2002]
is able to accelerate computation by using the GPU’s depth
test to prevent the execution of some kernel operations.

In summary, the Brook programming environment pro-
vides a simple but effective tool for computing on GPUs.
Brook for GPUs has been released as an open-source project
[Brook 2004] and our hope is that this effort will make it
easier for application developers to capture the performance
benefits of stream computing on the GPU for the graphics
community and beyond. By providing easy access to the
computational power within consumer graphics hardware,
stream computing has the potential to redefine the GPU as
not just a rendering engine, but the principle compute engine
for the PC.
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A BRCC Code Generation

The following code illustrates the compiler before and af-
ter for the SAXPY Brook kernel. The __fetch_float and
_stype macros are unique to each backend. brcc also in-
serts some argument information in the end of the compiled
Cg code for use by the runtime. The DirectX assembly and
CPU implementations are not shown.

Original Brook code:

kernel void saxpy(float alpha, float4 x<>, float4 y<>,
out float4 result<>) {

result = (alpha * x) + y;
}

Intermediate Cg code:

void saxpy (float alpha, float4 x, float4 y, out float4 result) {
result = alpha * x + y;

}
void main (uniform float alpha : register (c1),

uniform _stype _tex_x : register (s0),
float2 _tex_x_pos : TEXCOORD0,
uniform _stype _tex_y : register (s1),
float2 _tex_y_pos : TEXCOORD1,
out float4 __output_0 : COLOR0) {

float4 x; float4 y; float4 result;
x = __fetch_float4(_tex_x, _tex_x_pos );
y = __fetch_float4(_tex_y, _tex_y_pos );
saxpy(alpha, x, y, result );
__output_0 = result;

}

Final C++ code:

static const char* __saxpy_fp30[] = {
"!!FP1.0\n"
"DECLARE alpha;\n"
"TEX R0, f[TEX0].xyxx, TEX0, RECT;\n"
"TEX R1, f[TEX1].xyxx, TEX1, RECT;\n"
"MADR o[COLR], alpha.x, R0, R1;\n"
"END \n"
"##!!BRCC\n"
"##narg:4\n"
"##c:1:alpha\n"
"##s:4:x\n"
"##s:4:y\n"
"##o:4:result\n"
"##workspace:1024\n"

"##!!multipleOutputInfo:0:1:\n"
"",NULL};
void saxpy (const float alpha,

const ::brook::stream& x,
const ::brook::stream& y,
::brook::stream& result) {

static const void *__saxpy_fp[] = {
"fp30", __saxpy_fp30, "ps20", __saxpy_ps20,
"cpu", (void *) __saxpy_cpu, NULL, NULL };

static __BRTKernel k(__saxpy_fp);
k->PushConstant(alpha);
k->PushStream(x);
k->PushStream(y);
k->PushOutput(result);
k->Map();

}
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