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Is CUDA the parallel programming model that 
application developers have been waiting for?

Scalable Parallel  
PROGRAMMING with CUDA

The advent of multicore CPUs and manycore GPUs 
means that mainstream processor chips are now parallel 
systems. Furthermore, their parallelism continues to scale 
with Moore’s law. The challenge is to develop mainstream 
application software that transparently scales its parallel-
ism to leverage the increasing number of processor cores, 
much as 3D graphics applications transparently scale 
their parallelism to manycore GPUs with widely varying 
numbers of cores.  

According to conventional wisdom, parallel program-
ming is difficult. Early experience with the CUDA1,2 
scalable parallel programming model and C language, 
however, shows that many sophisticated programs can be 
readily expressed with a few easily understood abstrac-
tions. Since NVIDIA released CUDA in 2007, developers 
have rapidly developed scalable parallel programs for 
a wide range of applications, including computational 
chemistry, sparse matrix solvers, sorting, searching, and 
physics models. These applications scale transparently to 
hundreds of processor cores and thousands of concurrent 
threads. NVIDIA GPUs with the new Tesla unified graph-
ics and computing architecture (described in the GPU 
sidebar) run CUDA C programs and are widely available 
in laptops, PCs, workstations, and servers. The CUDA 
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model is also applicable to other shared-memory parallel 
processing architectures, including multicore CPUs.3 

CUDA provides three key abstractions—a hierarchy 
of thread groups, shared memories, and barrier syn-
chronization—that provide a clear parallel structure to 
conventional C code for one thread of the hierarchy. 

Multiple levels of threads, memory, and synchronization 
provide fine-grained data parallelism and thread paral-
lelism, nested within coarse-grained data parallelism and 
task parallelism. The abstractions guide the programmer 
to partition the problem into coarse sub-problems that 
can be solved independently in parallel, and then into 
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D
riven by the insatiable market demand for realtime, 
high-definition 3D graphics, the programmable GPU 
(graphics processing unit) has evolved into a highly 

parallel, multithreaded, manycore processor. It is designed to 
efficiently support the graphics shader programming model, 
in which a program for one thread draws one vertex or 
shades one pixel fragment. The GPU excels at fine-grained, 
data-parallel workloads consisting of thousands of indepen-
dent threads executing vertex, geometry, and pixel-shader 
program threads concurrently.  

The tremendous raw performance of modern GPUs has 
led researchers to explore mapping more general non-graph-
ics computations onto them. These GPGPU (general-purpose 
computation on GPUs) systems have produced some impres-
sive results, but the limitations and difficulties of doing this 
via graphics APIs are legend. This desire to use the GPU as a 
more general parallel computing device motivated NVIDIA 
to develop a new unified graphics and computing GPU 
architecture and the CUDA programming model.

GPU COMPUTING ARCHITECTURE
Introduced by NVIDIA in November 2006, the Tesla unified 
graphics and computing architecture1,2 significantly extends 
the GPU beyond graphics—its massively multithreaded 
processor array becomes a highly efficient unified platform 
for both graphics and general-purpose parallel computing 
applications. By scaling the number of processors and mem-
ory partitions, the Tesla architecture spans a wide market 
range—from the high-performance enthusiast GeForce 8800 
GPU and professional Quadro and Tesla computing products 
to a variety of inexpensive, mainstream GeForce GPUs. Its 
computing features enable straightforward programming of 
the GPU cores in C with CUDA. Wide availability in laptops, 

desktops, workstations, and servers, coupled with C pro-
grammability and CUDA software, make the Tesla architec-
ture the first ubiquitous supercomputing platform. 

The Tesla architecture is built around a scalable array of 
multithreaded SMs (streaming multiprocessors). Current 
GPU implementations range from 768 to 12,288 concur-
rently executing threads. Transparent scaling across this wide 
range of available parallelism is a key design goal of both the 
GPU architecture and the CUDA programming model. Figure 
A shows a GPU with 14 SMs—a total of 112 SP (streaming 
processor) cores—interconnected with four external DRAM 
partitions. When a CUDA program on the host CPU invokes 
a kernel grid, the CWD (compute work distribution) unit 
enumerates the blocks of the grid and begins distributing 
them to SMs with available execution capacity. The threads 
of a thread block execute concurrently on one SM. As thread 
blocks terminate, the CWD unit launches new blocks on the 
vacated multiprocessors.

An SM consists of eight scalar SP cores, two SFUs (special 
function units) for transcendentals, an MT IU (multithreaded 
instruction unit), and on-chip shared memory. The SM cre-
ates, manages, and executes up to 768 concurrent threads 
in hardware with zero scheduling overhead. It can execute 
as many as eight CUDA thread blocks concurrently, limited 
by thread and memory resources. The SM implements the 
CUDA __syncthreads() barrier synchronization intrinsic with 
a single instruction. Fast barrier synchronization together 
with lightweight thread creation and zero-overhead thread 
scheduling efficiently support very fine-grained parallelism, 
allowing a new thread to be created to compute each vertex, 
pixel, and data point.

To manage hundreds of threads running several different 
programs, the Tesla SM employs a new architecture we call 

UNIFIED GRAPHICS AND COMPUTING GPUS
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finer pieces that can be solved cooperatively in parallel. 
The programming model scales transparently to large 
numbers of processor cores: a compiled CUDA program 
executes on any number of processors, and only the run-
time system needs to know the physical processor count.  

THE CUDA PARADIGM
CUDA is a minimal extension of the C and C++ program-
ming languages. The programmer writes a serial program 
that calls parallel kernels, which may be simple functions 

or full programs. A kernel executes in parallel across a 
set of parallel threads. The programmer organizes these 
threads into a hierarchy of grids of thread blocks. A thread 
block is a set of concurrent threads that can cooperate 
among themselves through barrier synchronization and 
shared access to a memory space private to the block. A 
grid is a set of thread blocks that may each be executed 
independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the 
number of threads per block and the number of blocks 

NVIDIA Tesla GPU with 112 Streaming Processor Cores 
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Continued on the next page

SIMT (single-instruction, multiple-thread).3 The SM maps 
each thread to one SP scalar core, and each scalar thread 
executes independently with its own instruction address and 
register state. The SM SIMT unit creates, manages, sched-

ules, and executes threads in groups of 32 parallel threads 
called warps. (This term originates from weaving, the first 
parallel thread technology.) Individual threads composing a 
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making up the grid. Each thread is given a unique thread 
ID number threadIdx within its thread block, numbered 
0, 1, 2, ..., blockDim–1, and each thread block is given a 
unique block ID number blockIdx within its grid. CUDA 
supports thread blocks containing up to 512 threads. 
For convenience, thread blocks and grids may have one, 

two, or three dimensions, accessed via .x, .y, and .z index 
fields. 

As a very simple example of parallel programming, 
suppose that we are given two vectors x and y of n float-
ing-point numbers each and that we wish to compute 
the result of y←ax + y, for some scalar value a. This is the 
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SIMT warp start together at the same program address but 
are otherwise free to branch and execute independently. 
Each SM manages a pool of 24 warps of 32 threads per 
warp, a total of 768 threads.  

Every instruction issue time, the SIMT unit selects a warp 
that is ready to execute and issues the next instruction to the 
active threads of the warp. A warp executes one common 
instruction at a time, so full efficiency is realized when all 32 
threads of a warp agree on their execution path. If threads 
of a warp diverge via a data-dependent conditional branch, 
the warp serially executes each branch path taken, dis-
abling threads that are not on that path, and when all paths 
complete, the threads converge back to the same execution 
path. Branch divergence occurs only within a warp; different 
warps execute independently regardless of whether they are 
executing common or disjointed code paths. As a result, the 
Tesla-architecture GPUs are dramatically more efficient and 
flexible on branching code than previous-generation GPUs, 
as their 32-thread warps are much narrower than the SIMD 
(single-instruction multiple-data) width of prior GPUs. 

SIMT architecture is akin to SIMD vector organizations 
in that a single instruction controls multiple processing 
elements. A key difference is that SIMD vector organiza-
tions expose the SIMD width to the software, whereas SIMT 
instructions specify the execution and branching behavior 
of a single thread. In contrast with SIMD vector machines, 
SIMT enables programmers to write thread-level parallel 
code for independent, scalar threads, as well as data-parallel 
code for coordinated threads. For the purposes of cor-
rectness, the programmer can essentially ignore the SIMT 
behavior; however, substantial performance improvements 
can be realized by taking care that the code seldom requires 
threads in a warp to diverge. In practice, this is analogous 
to the role of cache lines in traditional code: cache line size 
can be safely ignored when designing for correctness but 
must be considered in the code structure when designing for 

peak performance. Vector architectures, on the other hand, 
require the software to coalesce loads into vectors and man-
age divergence manually.  

A thread’s variables typically reside in live registers. The 
16KB SM shared memory has very low access latency and 
high bandwidth similar to an L1 cache; it holds CUDA 
per-block __shared__ variables for the active thread blocks. 
The SM provides load/store instructions to access CUDA 
__device__ variables in GPU external DRAM. It coalesces indi-
vidual accesses of parallel threads in the same warp into fewer 
memory-block accesses when the addresses fall in the same 
block and meet alignment criteria. Because global memory 
latency can be hundreds of processor clocks, CUDA programs 
copy data to shared memory when it must be accessed 
multiple times by a thread block. Tesla load/store memory 
instructions use integer byte addressing to facilitate conven-
tional compiler code optimizations. The large thread count in 
each SM, together with support for many outstanding load 
requests, helps to cover load-to-use latency to the external 
DRAM. The latest Tesla-architecture GPUs also provide atomic 
read-modify-write memory instructions, facilitating parallel 
reductions and parallel-data structure management. 

CUDA applications perform well on Tesla-architecture 
GPUs because CUDA’s parallelism, synchronization, shared 
memories, and hierarchy of thread groups map efficiently 
to features of the GPU architecture, and because CUDA 
expresses application parallelism well.  

REFERENCES
1.  Lindholm, E., Nickolls, J., Oberman, S., Montrym, J. 2008. 

NVIDIA Tesla: A unified graphics and computing architec-
ture. IEEE Micro 28(2). 

2.  Nickolls, J. 2007. NVIDIA GPU parallel computing archi-
tecture. In IEEE Hot Chips 19 (August 20), Stanford, CA; 
http://www.hotchips.org/archives/hc19/.

3. See reference 1.
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so-called saxpy kernel defined by the BLAS (basic linear 
algebra subprograms) library. The code for performing 
this computation on both a serial processor and in paral-
lel using CUDA is shown in figure 1.

The __global__ declaration specifier indicates that the 
procedure is a kernel entry point. CUDA programs launch 
parallel kernels with the extended function-call syntax

kernel<<<dimGrid, dimBlock>>>(... parameter list ...);

where dimGrid and dimBlock are three-element vectors 
of type dim3 that specify the dimensions of the grid 
in blocks and the dimensions of the blocks in threads, 
respectively. Unspecified dimensions default to 1.

In the example, we launch a grid that assigns one 
thread to each element of the vectors and puts 256 
threads in each block. Each thread computes an element 
index from its thread and block IDs and then performs 
the desired calculation on the corresponding vector 
elements. The serial and parallel versions of this code 
are strikingly similar. This represents a fairly common pat-

tern. The serial code consists of a loop where each itera-
tion is independent of all the others. Such loops can be 
mechanically transformed into parallel kernels: each loop 
iteration becomes an independent thread. By assigning a 
single thread to each output element, we avoid the need 
for any synchronization among threads when writing 
results to memory.

The text of a CUDA kernel is simply a C function for 
one sequential thread. Thus, it is generally straightfor-
ward to write and is typically simpler than writing paral-
lel code for vector operations. Parallelism is determined 
clearly and explicitly by specifying the dimensions of a 
grid and its thread blocks when launching a kernel.

Parallel execution and thread management are auto-
matic. All thread creation, scheduling, and termination 
are handled for the programmer by the underlying sys-
tem. Indeed, a Tesla-architecture GPU performs all thread 
management directly in hardware. The threads of a block 
execute concurrently and may synchronize at a barrier by 
calling the __syncthreads() intrinsic. This guarantees that 
no thread participating in the barrier can proceed until all 
participating threads have reached the barrier. After pass-
ing the barrier, these threads are also guaranteed to see 
all writes to memory performed by participating threads 
before the barrier. Thus, threads in a block may commu-
nicate with each other by writing and reading per-block 
shared memory at a synchronization barrier.

Since threads in a block may share local memory and 
synchronize via barriers, they will reside on the same 
physical processor or multiprocessor. The number of 
thread blocks can, however, greatly exceed the number of 
processors. This virtualizes the processing elements and 
gives the programmer the flexibility to parallelize at what-
ever granularity is most convenient. This allows intuitive 
problem decompositions, as the number of blocks can 
be dictated by the size of the data being processed rather 
than by the number of processors in the system. This also 
allows the same CUDA program to scale to widely varying 
numbers of processor cores.

To manage this processing element virtualization and 
provide scalability, CUDA requires that thread blocks exe-
cute independently. It must be possible to execute blocks 
in any order, in parallel or in series. Different blocks have 
no means of direct communication, although they may 
coordinate their activities using atomic memory operations 
on the global memory visible to all threads—by atomi-
cally incrementing queue pointers, for example.

This independence requirement allows thread blocks 
to be scheduled in any order across any number of cores, 
making the CUDA model scalable across an arbitrary 

Computing y ← ax + y with a Serial Loop
void saxpy_serial(int n, float alpha, float *x, float *y)
{
    for(int i = 0; i<n; ++i)
        y[i] = alpha*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y ← ax + y in parallel using CUDA
__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
    int i = blockIdx.x*blockDim.x + threadIdx.x;

    if( i<n )  y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIG 1 
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number of cores, as well as across a variety of parallel 
architectures. It also helps to avoid the possibility of dead-
lock. 

An application may execute multiple grids either 
independently or dependently. Independent grids may 
execute concurrently given sufficient hardware resources. 
Dependent grids execute sequentially, with an implicit 
inter-kernel barrier between them, thus guaranteeing that 
all blocks of the first grid will complete before any block 
of the second dependent grid is launched.

Threads may access data from multiple memory spaces 
during their execution. Each thread has a private local 
memory. CUDA uses this memory for thread-private vari-
ables that do not fit in the thread’s registers, as well as for 
stack frames and register spilling. Each thread block has a 
shared memory visible to all threads of the block that has 
the same lifetime as the block. Finally, all threads have 
access to the same global memory. Programs declare vari-
ables in shared and global memory with the __shared__ 

and __device__ type qualifiers. On a Tesla-architecture 
GPU, these memory spaces correspond to physically sepa-
rate memories: per-block shared memory is a low-latency 
on-chip RAM, while global memory resides in the fast 
DRAM on the graphics board.

Shared memory is expected to be a low-latency mem-
ory near each processor, much like an L1 cache. It can, 
therefore, provide for high-performance communication 
and data sharing among the threads of a thread block. 
Since it has the same lifetime as its corresponding thread 
block, kernel code will typically initialize data in shared 
variables, compute using shared variables, and copy 
shared memory results to global memory. Thread blocks 
of sequentially dependent grids communicate via global 
memory, using it to read input and write results.

Figure 2 diagrams the nested levels of threads, thread 
blocks, and grids of thread blocks. It shows the corre-
sponding levels of memory sharing: local, shared, and 
global memories for per-thread, per-thread-block, and 

per-application data shar-
ing.    

A program manages 
the global memory space 
visible to kernels through 
calls to the CUDA runtime, 
such as cudaMalloc() and 

cudaFree(). Kernels may 
execute on a physically 
separate device, as is the 
case when running kernels 
on the GPU. Consequently, 
the application must use 
cudaMemcpy() to copy 
data between the allocated 
space and the host system 
memory.

The CUDA program-
ming model is similar in 
style to the familiar SPMD 
(single-program multiple-
data) model—it expresses 
parallelism explicitly, and 
each kernel executes on a 
fixed number of threads. 
CUDA, however, is more 
flexible than most real-
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Levels of Parallel Granularity and Memory Sharing

per-block
shared

memory

per-thread local memory

thread block

sequence

global
memory

grid 0

grid 1

thread

FIG 2 

GPUsFO
CU

S



ACM QUEUE  March/April 2008  47  more queue: www.acmqueue.com

izations of SPMD, because each kernel call dynamically 
creates a new grid with the right number of thread blocks 
and threads for that application step. The program-
mer can use a convenient degree of parallelism for each 
kernel, rather than having to design all phases of the 
computation to use the same number of threads. 

Figure 3 shows an example of a SPMD-like CUDA 
code sequence. It first instantiates kernelF on a 2D grid 
of 3×2 blocks where each 2D thread block consists of 5×3 
threads. It then instantiates kernelG on a 1D grid of four 
1D thread blocks with 
six threads each. Because 
kernelG depends on the 
results of kernelF, they are 
separated by an inter-
kernel synchronization 
barrier.  

The concurrent threads 
of a thread block express 
fine-grained data and 
thread parallelism. The 
independent thread blocks 
of a grid express coarse-
grained data parallelism. 
Independent grids express 
coarse-grained task paral-
lelism. A kernel is simply C 
code for one thread of the 
hierarchy.  

RESTRICTIONS
When developing CUDA 
programs, it is important 
to understand the ways in 
which the CUDA model 
is restricted, largely for 
reasons of efficiency. 
Threads and thread blocks 
may be created only by 
invoking a parallel kernel, 
not from within a parallel 
kernel. Together with the 
required independence of 
thread blocks, this makes it 
possible to execute CUDA 
programs with a simple 
scheduler that introduces 
minimal runtime over-
head. In fact, the Tesla 
architecture implements 

hardware management and scheduling of threads and 
thread blocks.

Task parallelism can be expressed at the thread-block 
level, but blockwide barriers are not well suited for 
supporting task parallelism among threads in a block. 
To enable CUDA programs to run on any number of 
processors, communication between thread blocks within 
the same kernel grid is not allowed—they must execute 
independently. Since CUDA requires that thread blocks 
be independent and allows blocks to be executed in any 

Kernel, Barrier, Kernel Sequence
kernelF 2D grid is 3 x 2 thread blocks;

each block is 5 x 3 threads

block 0,0 block 1,0 block 2,0

block 0,1 block 1,1

block 1,1

block 1,2

thread  0,0 thread  1,0 thread  2,0 thread  3,0 thread  4,0

thread  0,1 thread  1,1 thread  2,1 thread  3,1 thread  4,1

thread  0,2 thread  1,2 thread  2,2 thread  3,2 thread  4,2

sequence

inter-kernel synchronization barrier

kernelF <<< (3,2),(5,3)>>> (params);

kernelG 1D grid is 4 thread blocks;
each block is 6 threads

block 0 block 1

block 2

block 2 block 3

thread  0 thread  1 thread  2 thread  3 thread  4 thread  5

kernelG <<< 4,6 >>> (params);

FIG 3 
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order, combining results generated by multiple blocks 
must in general be done by launching a second kernel 
on a new grid of thread blocks. However, multiple thread 
blocks can coordinate their work using atomic operations 
on global memory (e.g., to manage a data structure).

Recursive function calls are not allowed in CUDA 
kernels. Recursion is unattractive in a massively paral-
lel kernel because providing stack space for the tens of 
thousands of threads that may be active would require 
substantial amounts of memory. Serial algorithms that are 
normally expressed using recursion, such as quicksort, are 
typically best implemented using nested data parallelism 
rather than explicit recursion.

To support a heterogeneous system architecture 
combining a CPU and a GPU, each with its own memory 
system, CUDA programs must copy data and results 
between host memory and device memory. The overhead 
of CPU–GPU interaction and data transfers is minimized 
by using DMA block-transfer engines and fast intercon-
nects. Of course, problems large enough to need a GPU 
performance boost amortize the overhead better than 
small problems.  

RELATED WORK
Although the first CUDA implementation targets NVIDIA 
GPUs, the CUDA abstractions are general and useful 
for programming multicore CPUs and scalable parallel 
systems. Coarse-grained thread blocks map naturally to 
separate processor cores, while fine-grained threads map 
to multiple-thread contexts, vector operations, and pipe-
lined loops in each core. Stratton et al. have developed 
a prototype source-to-source translation framework that 
compiles CUDA programs for multicore CPUs by map-
ping a thread block to loops within a single CPU thread. 
They found that CUDA kernels compiled in this way 
perform and scale well.4

CUDA uses parallel kernels similar to recent GPGPU 
programming models, but differs by providing flex-
ible thread creation, thread blocks, shared memory, 
global memory, and explicit synchronization. Stream-
ing languages apply parallel kernels to data records 
from a stream. Applying a stream kernel to one record 
is analogous to executing a single CUDA kernel thread, 
but stream programs do not allow dependencies among 
kernel threads, and kernels communicate only via FIFO 
(first-in, first-out) streams. Brook for GPUs differentiates 

between FIFO input/output streams and random-access 
gather streams, and it supports parallel reductions. Brook 
is a good fit for earlier-generation GPUs with random 
access texture units and raster pixel operation units.5  

Pthreads and Java provide fork-join parallelism but 
are not particularly convenient for data-parallel applica-
tions. OpenMP targets shared memory architectures with 
parallel execution constructs, including “parallel for” 
and teams of coarse-grained threads. Intel’s C++ Thread-
ing Building Blocks provide similar features for multicore 
CPUs. MPI targets distributed memory systems and uses 
message passing rather than shared memory.  

CUDA APPLICATION ExPERIENCE
The CUDA programming model extends the C language 
with a small number of additional parallel abstractions. 
Programmers who are comfortable developing in C can 
quickly begin writing CUDA programs.

In the relatively short period since the introduction 
of CUDA, a number of real-world parallel application 
codes have been developed using the CUDA model. 
These include FHD-spiral MRI reconstruction,6 molecular 
dynamics,7 and n-body astrophysics simulation.8 Running 
on Tesla-architecture GPUs, these applications were able 
to achieve substantial speedups over alternative imple-
mentations running on serial CPUs: the MRI reconstruc-
tion was 263 times faster; the molecular dynamics code 
was 10–100 times faster; and the n-body simulation was 
50–250 times faster. These large speedups are a result of 
the highly parallel nature of the Tesla architecture and its 
high memory bandwidth.

Scalable Parallel PROGRAMMING with CUDA
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ExAMPLE: SPARSE MATRIx-
VECTOR PRODUCT
A variety of parallel algo-
rithms can be written in 
CUDA in a fairly straight-
forward manner, even 
when the data structures 
involved are not simple 
regular grids. SpMV (sparse 
matrix-vector multiplica-
tion) is a good example of 
an important numerical 
building block that can be 
parallelized quite directly 
using the abstractions 
provided by CUDA. The 
kernels we discuss here, 
when combined with the 
provided CUBLAS vector 
routines, make writing 
iterative solvers such as 
the conjugate gradient9 
method straightforward.

A sparse n × n matrix is 
one in which the number 
of nonzero entries m is 
only a small fraction of the 
total. Sparse matrix rep-
resentations seek to store 
only the nonzero elements 
of a matrix. Since it is fairly 
typical that a sparse n × n 
matrix will contain only 
m=O(n) nonzero elements, 
this represents a substan-
tial savings in storage space 
and processing time.

One of the most com-
mon representations for 
general unstructured 
sparse matrices is the CSR 
(compressed sparse row) 
representation. The m 
nonzero elements of the 
matrix A are stored in row-
major order in an array Av. 
A second array Aj records 
the corresponding column 
index for each entry of Av. 
Finally, an array Ap of n+1 

float multiply_row(unsigned int rowsize,
 unsigned int *Aj, // column indices for row
 float *Av, // non-zero entries for row
 float *x) // the RHS vector
{
    float sum = 0;

    for(unsigned int column=0; column<rowsize; ++column)
 sum += Av[column] * x[Aj[column]];

    return sum;
} FIG 5 
void csrmul_serial(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 float *x, float *y)
{
    for(unsigned int row=0; row<num_rows; ++row)
    {
 unsigned int row_begin = Ap[row];
 unsigned int row_end   = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
 Av+row_begin, x);
    }
}

FIG 6 
__global__
void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 float *x, float *y)
{
    unsigned int row = blockIdx.x*blockDim.x + threadIdx.x;

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end   = Ap[row+1];

        y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
 Av+row_begin, x);
    }
} FIG 7 
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elements records the extent 
of each row in the previous 
arrays; the entries for row 
i in Aj and Av extend from 
index Ap[i] up to, but not 
including, index Ap[i+1]. 
This implies that Ap[0] will 
always be 0 and Ap[n] will 
always be the number of nonzero elements in the matrix. 
Figure 4 shows an example of the CSR representation of a 
simple matrix.

Given a matrix A in CSR form, we can compute a 
single row of the product y = Ax using the multiply_row() 
procedure shown in figure 5.

Computing the full product is then simply a matter of 
looping over all rows and computing the result for that 
row using multiply_row(), as shown in figure 6.

This algorithm can be translated into a parallel 
CUDA kernel quite easily. We simply spread the loop in 
csrmul_serial() over many parallel threads. Each thread 
will compute exactly one row of the output vector y. 
Figure 7 shows the code for this kernel. Note that it 
looks extremely similar to the serial loop used in the 
csrmul_serial() procedure. There are really only two points 
of difference. First, the row index is computed from the 
block and thread indices assigned to each thread. Second, 
we have a conditional that evaluates a row product only if 
the row index is within the bounds of the matrix (this is 
necessary since the number of rows n need not be a mul-
tiple of the block size used in launching the kernel).

Assuming that the matrix data structures have already 
been copied to the GPU device memory, launching this 
kernel will look like the code in figure 8.

The pattern that we see here is a common one. The 
original serial algorithm is a loop whose iterations are 
independent of each other. Such loops can be parallelized 
quite easily by simply assigning one or more iterations of 
the loop to each parallel thread. The programming model 
provided by CUDA makes expressing this type of parallel-
ism particularly straightforward.

This general strategy of decomposing computations 
into blocks of independent work, and more specifically 
breaking up independent loop iterations, is not unique to 
CUDA. This is a common approach used in one form or 
another by various parallel programming systems, includ-
ing OpenMP and Intel’s Threading Building Blocks.

Scalable Parallel PROGRAMMING with CUDA
    unsigned int blocksize = 128;  // or any size up to 512
    unsigned int nblocks   = (num_rows + blocksize - 1) / blocksize;
    csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y);

FIG 8 
__global__ 
void csrmul_cached(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 const float *x, float *y)
{
    // Cache the rows of x[] corresponding to this block.
    __shared__ float cache[blocksize];

    unsigned int block_begin = blockIdx.x * blockDim.x;
    unsigned int block_end   = block_begin + blockDim.x;
    unsigned int row             = block_begin + threadIdx.x;

    // Fetch and cache our window of x[].
    if( row<num_rows)  cache[threadIdx.x] = x[row];
    __syncthreads();

    if( row<num_rows )
    {
        unsigned int row_begin = Ap[row];
        unsigned int row_end    = Ap[row+1];
        float sum = 0, x_j;

        for(unsigned int col=row_begin; col<row_end; ++col)
        {
 unsigned int j = Aj[col];
            
 // Fetch x_j from our cache when possible
 if( j>=block_begin && j<block_end )
                x_j = cache[j-block_begin];
 else
                x_j = x[j];

 sum += Av[col] * x_j;
        }

        y[row] = sum;
    }
} FIG 9 
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CACHING IN SHARED MEMORY
The SpMV algorithms outlined here are fairly simplistic. 
We can make a number of optimizations in both the CPU 
and GPU codes that can improve performance, including 
loop unrolling, matrix reordering, and register blocking.10 

The parallel kernels can also be reimplemented in terms 
of data-parallel scan operations.11

One of the important architectural features exposed 
by CUDA is the presence of the per-block shared memory, 
a small on-chip memory with very low latency. Taking 
advantage of this memory can deliver substantial perfor-
mance improvements. One common way of doing this 
is to use shared memory as a software-managed cache to 
hold frequently reused data, shown in figure 9.

In the context of sparse matrix multiplication, we 
observe that several rows of A may use a particular array 
element x[i]. In many common cases, and particularly 
when the matrix has been reordered, the rows using x[i] 
will be rows near row i. We can therefore implement 
a simple caching scheme and expect to achieve some 
performance benefit. The block of threads processing 
rows i through j will load 
x[i] through x[j] into its 
shared memory. We will 
unroll the multiply_row() 
loop and fetch elements of 
x from the cache whenever 
possible. The resulting 
code is shown in figure 9. 
Shared memory can also 
be used to make other 
optimizations, such as 
fetching Ap[row+1] from an 
adjacent thread rather than 
refetching it from memory.

Because the Tesla 
architecture provides 
an explicitly managed 
on-chip shared memory 
rather than an implicitly 
active hardware cache, it 
is fairly common to add 
this sort of optimization. 
Although this can impose 
some additional devel-
opment burden on the 
programmer, it is relatively 
minor, and the potential 
performance benefits 
can be substantial. In the 

example shown in figure 9, even this fairly simple use of 
shared memory returns a roughly 20 percent performance 
improvement on representative matrices derived from 3D 
surface meshes. The availability of an explicitly managed 
memory in lieu of an implicit cache also has the advan-
tage that caching and prefetching policies can be specifi-
cally tailored to the application needs.

ExAMPLE: PARALLEL REDUCTION
Suppose that we are given a sequence of N integers that 
must be combined in some fashion (e.g., a sum). This 
occurs in a variety of algorithms, linear algebra being 
a common example. On a serial processor, we would 
write a simple loop with a single accumulator variable 
to construct the sum of all elements in sequence. On a 
parallel machine, using a single accumulator variable 
would create a global serialization point and lead to very 
poor performance. A well-known solution to this problem 
is the so-called parallel reduction algorithm. Each paral-
lel thread sums a fixed-length subsequence of the input. 
We then collect these partial sums together, by summing 

__global__
void plus_reduce(int *input, unsigned int N, int *total)
{
    unsigned int tid = threadIdx.x;
    unsigned int i   = blockIdx.x*blockDim.x + threadIdx.x;

    // Each block loads its elements into shared memory, padding
    // with 0 if N is not a multiple of blocksize
    __shared__ int x[blocksize];
    x[tid] = (i<N) ? input[i] : 0;
    __syncthreads();

    // Every thread now holds 1 input value in x[]
    //
    // Build summation tree over elements. See attached figure.
    for(int s=blockDim.x/2; s>0; s=s/2)
    {
         if(tid < s)  x[tid] += x[tid + s];
         __syncthreads();
    }

    // Thread 0 now holds the sum of all input values
    // to this block. Have it add that sum to the running total
    if( tid == 0 )  atomicAdd(total, x[tid]);
}

FIG 10 
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pairs of partial sums in 
parallel. Each step of this 
pair-wise summation cuts 
the number of partial sums 
in half and ultimately 
produces the final sum 
after log2 N steps. Note that 
this implicitly builds a tree 
structure over the initial 
partial sums.

In the example shown 
in figure 10, each thread 
simply loads one element 
of the input sequence (i.e., 
it initially sums a subse-
quence of length one). At 
the end of the reduction, 
we want thread 0 to hold 
the sum of all elements 
initially loaded by the 
threads of its block. We 
can achieve this in parallel 
by summing values in a 
tree-like pattern. The loop in this kernel implicitly builds 
a summation tree over the input elements. The action of 
this loop for the simple case of a block of eight threads is 
illustrated in figure 11. The steps of the loop are shown as 
successive levels of the diagram and edges indicate from 
where partial sums are being read.

At the end of this loop, thread 0 holds the sum of 
all the values loaded by this block. If we want the final 
value of the location pointed to by total to contain the 
total of all elements in the array, we must combine the 
partial sums of all the blocks in the grid. One strategy 
would be to have each block write its partial sum into a 
second array and then launch the reduction kernel again, 
repeating the process until we had reduced the sequence 
to a single value. A more attractive alternative supported 
by the Tesla architecture is to use atomicAdd(), an efficient 
atomic read-modify-write primitive supported by the 
memory subsystem. This eliminates the need for addi-
tional temporary arrays and repeated kernel launches.

Parallel reduction is an essential primitive for parallel 
programming and highlights the importance of per-block 
shared memory and low-cost barriers in making coopera-
tion among threads efficient. This degree of data shuffling 

among threads would be prohibitively expensive if done 
in off-chip global memory. 

THE DEMOCRATIzATION OF  
PARALLEL PROGRAMMING
CUDA is a model for parallel programming that pro-
vides a few easily understood abstractions that allow 
the programmer to focus on algorithmic efficiency and 
develop scalable parallel applications. In fact, CUDA is an 
excellent programming environment for teaching paral-
lel programming. The University of Virginia has used it 
as just a short, three-week module in an undergraduate 
computer architecture course, and students were able to 
write a correct k-means clustering program after just three 
lectures. The University of Illinois has successfully taught 
a semester-long parallel programming course using CUDA 
to a mix of computer science and non-computer science 
majors, with students obtaining impressive speedups on 
a variety of real applications, including the previously 
mentioned MRI reconstruction example.

CUDA is supported on NVIDIA GPUs with the Tesla 
unified graphics and computing architecture of the 
GeForce 8-series, recent Quadro, Tesla, and future GPUs. 

Scalable Parallel PROGRAMMING with CUDA

Parallel Sum Reduction Tree

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[i] += x[i+4];

x[i] += x[i+2];

x[i] += x[i+1];

FIG 11 
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The programming paradigm provided by CUDA has 
allowed developers to harness the power of these scal-
able parallel processors with relative ease, enabling them 
to achieve speedups of 100 times or more on a variety of 
sophisticated applications. 

The CUDA abstractions, however, are general and 
provide an excellent programming environment for mul-
ticore CPU chips. A prototype source-to-source translation 
framework developed at the University of Illinois com-
piles CUDA programs for multicore CPUs by mapping 
a parallel thread block to loops within a single physical 
thread. CUDA kernels compiled in this way exhibit excel-
lent performance and scalability.12

Although CUDA was released less than a year ago, it is 
already the target of massive development activity—there 
are tens of thousands of CUDA developers. The combi-
nation of massive speedups, an intuitive programming 
environment, and affordable, ubiquitous hardware is rare 
in today’s market. In short, CUDA represents a democrati-
zation of parallel programming. Q
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