
40 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

Scalable Parallel
PROGRAMMING

JOHN NICKOLLS, IAN BUCK, AND
MICHAEL GARLAND, NVIDIA,
KEVIN SKADRON, UNIVERSITY OF VIRGINIA

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1365490.1365500&domain=pdf&date_stamp=2008-03-01

ACM QUEUE March/April 2008 41 more queue: www.acmqueue.com

Is CUDA the parallel programming model that
application developers have been waiting for?

Scalable Parallel
PROGRAMMING with CUDA

The advent of multicore CPUs and manycore GPUs
means that mainstream processor chips are now parallel
systems. Furthermore, their parallelism continues to scale
with Moore’s law. The challenge is to develop mainstream
application software that transparently scales its parallel-
ism to leverage the increasing number of processor cores,
much as 3D graphics applications transparently scale
their parallelism to manycore GPUs with widely varying
numbers of cores.

According to conventional wisdom, parallel program-
ming is difficult. Early experience with the CUDA1,2
scalable parallel programming model and C language,
however, shows that many sophisticated programs can be
readily expressed with a few easily understood abstrac-
tions. Since NVIDIA released CUDA in 2007, developers
have rapidly developed scalable parallel programs for
a wide range of applications, including computational
chemistry, sparse matrix solvers, sorting, searching, and
physics models. These applications scale transparently to
hundreds of processor cores and thousands of concurrent
threads. NVIDIA GPUs with the new Tesla unified graph-
ics and computing architecture (described in the GPU
sidebar) run CUDA C programs and are widely available
in laptops, PCs, workstations, and servers. The CUDA

GPUsFO
CU

S

42 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

model is also applicable to other shared-memory parallel
processing architectures, including multicore CPUs.3

CUDA provides three key abstractions—a hierarchy
of thread groups, shared memories, and barrier syn-
chronization—that provide a clear parallel structure to
conventional C code for one thread of the hierarchy.

Multiple levels of threads, memory, and synchronization
provide fine-grained data parallelism and thread paral-
lelism, nested within coarse-grained data parallelism and
task parallelism. The abstractions guide the programmer
to partition the problem into coarse sub-problems that
can be solved independently in parallel, and then into

Scalable Parallel PROGRAMMING with CUDA

D
riven by the insatiable market demand for realtime,
high-definition 3D graphics, the programmable GPU
(graphics processing unit) has evolved into a highly

parallel, multithreaded, manycore processor. It is designed to
efficiently support the graphics shader programming model,
in which a program for one thread draws one vertex or
shades one pixel fragment. The GPU excels at fine-grained,
data-parallel workloads consisting of thousands of indepen-
dent threads executing vertex, geometry, and pixel-shader
program threads concurrently.

The tremendous raw performance of modern GPUs has
led researchers to explore mapping more general non-graph-
ics computations onto them. These GPGPU (general-purpose
computation on GPUs) systems have produced some impres-
sive results, but the limitations and difficulties of doing this
via graphics APIs are legend. This desire to use the GPU as a
more general parallel computing device motivated NVIDIA
to develop a new unified graphics and computing GPU
architecture and the CUDA programming model.

GPU COMPUTING ARCHITECTURE
Introduced by NVIDIA in November 2006, the Tesla unified
graphics and computing architecture1,2 significantly extends
the GPU beyond graphics—its massively multithreaded
processor array becomes a highly efficient unified platform
for both graphics and general-purpose parallel computing
applications. By scaling the number of processors and mem-
ory partitions, the Tesla architecture spans a wide market
range—from the high-performance enthusiast GeForce 8800
GPU and professional Quadro and Tesla computing products
to a variety of inexpensive, mainstream GeForce GPUs. Its
computing features enable straightforward programming of
the GPU cores in C with CUDA. Wide availability in laptops,

desktops, workstations, and servers, coupled with C pro-
grammability and CUDA software, make the Tesla architec-
ture the first ubiquitous supercomputing platform.

The Tesla architecture is built around a scalable array of
multithreaded SMs (streaming multiprocessors). Current
GPU implementations range from 768 to 12,288 concur-
rently executing threads. Transparent scaling across this wide
range of available parallelism is a key design goal of both the
GPU architecture and the CUDA programming model. Figure
A shows a GPU with 14 SMs—a total of 112 SP (streaming
processor) cores—interconnected with four external DRAM
partitions. When a CUDA program on the host CPU invokes
a kernel grid, the CWD (compute work distribution) unit
enumerates the blocks of the grid and begins distributing
them to SMs with available execution capacity. The threads
of a thread block execute concurrently on one SM. As thread
blocks terminate, the CWD unit launches new blocks on the
vacated multiprocessors.

An SM consists of eight scalar SP cores, two SFUs (special
function units) for transcendentals, an MT IU (multithreaded
instruction unit), and on-chip shared memory. The SM cre-
ates, manages, and executes up to 768 concurrent threads
in hardware with zero scheduling overhead. It can execute
as many as eight CUDA thread blocks concurrently, limited
by thread and memory resources. The SM implements the
CUDA __syncthreads() barrier synchronization intrinsic with
a single instruction. Fast barrier synchronization together
with lightweight thread creation and zero-overhead thread
scheduling efficiently support very fine-grained parallelism,
allowing a new thread to be created to compute each vertex,
pixel, and data point.

To manage hundreds of threads running several different
programs, the Tesla SM employs a new architecture we call

UNIFIED GRAPHICS AND COMPUTING GPUS

GPUsFO
CU

S

ACM QUEUE March/April 2008 43 more queue: www.acmqueue.com

finer pieces that can be solved cooperatively in parallel.
The programming model scales transparently to large
numbers of processor cores: a compiled CUDA program
executes on any number of processors, and only the run-
time system needs to know the physical processor count.

THE CUDA PARADIGM
CUDA is a minimal extension of the C and C++ program-
ming languages. The programmer writes a serial program
that calls parallel kernels, which may be simple functions

or full programs. A kernel executes in parallel across a
set of parallel threads. The programmer organizes these
threads into a hierarchy of grids of thread blocks. A thread
block is a set of concurrent threads that can cooperate
among themselves through barrier synchronization and
shared access to a memory space private to the block. A
grid is a set of thread blocks that may each be executed
independently and thus may execute in parallel.

When invoking a kernel, the programmer specifies the
number of threads per block and the number of blocks

NVIDIA Tesla GPU with 112 Streaming Processor Cores

interconnection network

memory

host CPU

host interface
GPU

input assemble

vertex work
distribution

texture
unit

tex L1

setup/raster/Zcull

pixel work
distribution

compute work
distribution

system memory

ROP L2

memory

ROP L2

memory

ROP L2

memory

ROP L2

SP

MT IU

SM

texture
unit

tex L1

texture
unit

tex L1

texture
unit

tex L1

texture
unit

tex L1

texture
unit

tex L1

texture
unit

tex L1
shared

memory

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

FIG A

Continued on the next page

SIMT (single-instruction, multiple-thread).3 The SM maps
each thread to one SP scalar core, and each scalar thread
executes independently with its own instruction address and
register state. The SM SIMT unit creates, manages, sched-

ules, and executes threads in groups of 32 parallel threads
called warps. (This term originates from weaving, the first
parallel thread technology.) Individual threads composing a

44 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

making up the grid. Each thread is given a unique thread
ID number threadIdx within its thread block, numbered
0, 1, 2, ..., blockDim–1, and each thread block is given a
unique block ID number blockIdx within its grid. CUDA
supports thread blocks containing up to 512 threads.
For convenience, thread blocks and grids may have one,

two, or three dimensions, accessed via .x, .y, and .z index
fields.

As a very simple example of parallel programming,
suppose that we are given two vectors x and y of n float-
ing-point numbers each and that we wish to compute
the result of y←ax + y, for some scalar value a. This is the

Scalable Parallel PROGRAMMING with CUDA

SIMT warp start together at the same program address but
are otherwise free to branch and execute independently.
Each SM manages a pool of 24 warps of 32 threads per
warp, a total of 768 threads.

Every instruction issue time, the SIMT unit selects a warp
that is ready to execute and issues the next instruction to the
active threads of the warp. A warp executes one common
instruction at a time, so full efficiency is realized when all 32
threads of a warp agree on their execution path. If threads
of a warp diverge via a data-dependent conditional branch,
the warp serially executes each branch path taken, dis-
abling threads that are not on that path, and when all paths
complete, the threads converge back to the same execution
path. Branch divergence occurs only within a warp; different
warps execute independently regardless of whether they are
executing common or disjointed code paths. As a result, the
Tesla-architecture GPUs are dramatically more efficient and
flexible on branching code than previous-generation GPUs,
as their 32-thread warps are much narrower than the SIMD
(single-instruction multiple-data) width of prior GPUs.

SIMT architecture is akin to SIMD vector organizations
in that a single instruction controls multiple processing
elements. A key difference is that SIMD vector organiza-
tions expose the SIMD width to the software, whereas SIMT
instructions specify the execution and branching behavior
of a single thread. In contrast with SIMD vector machines,
SIMT enables programmers to write thread-level parallel
code for independent, scalar threads, as well as data-parallel
code for coordinated threads. For the purposes of cor-
rectness, the programmer can essentially ignore the SIMT
behavior; however, substantial performance improvements
can be realized by taking care that the code seldom requires
threads in a warp to diverge. In practice, this is analogous
to the role of cache lines in traditional code: cache line size
can be safely ignored when designing for correctness but
must be considered in the code structure when designing for

peak performance. Vector architectures, on the other hand,
require the software to coalesce loads into vectors and man-
age divergence manually.

A thread’s variables typically reside in live registers. The
16KB SM shared memory has very low access latency and
high bandwidth similar to an L1 cache; it holds CUDA
per-block __shared__ variables for the active thread blocks.
The SM provides load/store instructions to access CUDA
__device__ variables in GPU external DRAM. It coalesces indi-
vidual accesses of parallel threads in the same warp into fewer
memory-block accesses when the addresses fall in the same
block and meet alignment criteria. Because global memory
latency can be hundreds of processor clocks, CUDA programs
copy data to shared memory when it must be accessed
multiple times by a thread block. Tesla load/store memory
instructions use integer byte addressing to facilitate conven-
tional compiler code optimizations. The large thread count in
each SM, together with support for many outstanding load
requests, helps to cover load-to-use latency to the external
DRAM. The latest Tesla-architecture GPUs also provide atomic
read-modify-write memory instructions, facilitating parallel
reductions and parallel-data structure management.

CUDA applications perform well on Tesla-architecture
GPUs because CUDA’s parallelism, synchronization, shared
memories, and hierarchy of thread groups map efficiently
to features of the GPU architecture, and because CUDA
expresses application parallelism well.

REFERENCES
1. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J. 2008.

NVIDIA Tesla: A unified graphics and computing architec-
ture. IEEE Micro 28(2).

2. Nickolls, J. 2007. NVIDIA GPU parallel computing archi-
tecture. In IEEE Hot Chips 19 (August 20), Stanford, CA;
http://www.hotchips.org/archives/hc19/.

3. See reference 1.

GPUsFO
CU

S

ACM QUEUE March/April 2008 45 more queue: www.acmqueue.com

so-called saxpy kernel defined by the BLAS (basic linear
algebra subprograms) library. The code for performing
this computation on both a serial processor and in paral-
lel using CUDA is shown in figure 1.

The __global__ declaration specifier indicates that the
procedure is a kernel entry point. CUDA programs launch
parallel kernels with the extended function-call syntax

kernel<<<dimGrid, dimBlock>>>(... parameter list ...);

where dimGrid and dimBlock are three-element vectors
of type dim3 that specify the dimensions of the grid
in blocks and the dimensions of the blocks in threads,
respectively. Unspecified dimensions default to 1.

In the example, we launch a grid that assigns one
thread to each element of the vectors and puts 256
threads in each block. Each thread computes an element
index from its thread and block IDs and then performs
the desired calculation on the corresponding vector
elements. The serial and parallel versions of this code
are strikingly similar. This represents a fairly common pat-

tern. The serial code consists of a loop where each itera-
tion is independent of all the others. Such loops can be
mechanically transformed into parallel kernels: each loop
iteration becomes an independent thread. By assigning a
single thread to each output element, we avoid the need
for any synchronization among threads when writing
results to memory.

The text of a CUDA kernel is simply a C function for
one sequential thread. Thus, it is generally straightfor-
ward to write and is typically simpler than writing paral-
lel code for vector operations. Parallelism is determined
clearly and explicitly by specifying the dimensions of a
grid and its thread blocks when launching a kernel.

Parallel execution and thread management are auto-
matic. All thread creation, scheduling, and termination
are handled for the programmer by the underlying sys-
tem. Indeed, a Tesla-architecture GPU performs all thread
management directly in hardware. The threads of a block
execute concurrently and may synchronize at a barrier by
calling the __syncthreads() intrinsic. This guarantees that
no thread participating in the barrier can proceed until all
participating threads have reached the barrier. After pass-
ing the barrier, these threads are also guaranteed to see
all writes to memory performed by participating threads
before the barrier. Thus, threads in a block may commu-
nicate with each other by writing and reading per-block
shared memory at a synchronization barrier.

Since threads in a block may share local memory and
synchronize via barriers, they will reside on the same
physical processor or multiprocessor. The number of
thread blocks can, however, greatly exceed the number of
processors. This virtualizes the processing elements and
gives the programmer the flexibility to parallelize at what-
ever granularity is most convenient. This allows intuitive
problem decompositions, as the number of blocks can
be dictated by the size of the data being processed rather
than by the number of processors in the system. This also
allows the same CUDA program to scale to widely varying
numbers of processor cores.

To manage this processing element virtualization and
provide scalability, CUDA requires that thread blocks exe-
cute independently. It must be possible to execute blocks
in any order, in parallel or in series. Different blocks have
no means of direct communication, although they may
coordinate their activities using atomic memory operations
on the global memory visible to all threads—by atomi-
cally incrementing queue pointers, for example.

This independence requirement allows thread blocks
to be scheduled in any order across any number of cores,
making the CUDA model scalable across an arbitrary

Computing y ← ax + y with a Serial Loop
void saxpy_serial(int n, float alpha, float *x, float *y)
{
 for(int i = 0; i<n; ++i)
 y[i] = alpha*x[i] + y[i];
}

// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y);

Computing y ← ax + y in parallel using CUDA
__global__
void saxpy_parallel(int n, float alpha, float *x, float *y)
{
 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if(i<n) y[i] = alpha*x[i] + y[i];
}

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

FIG 1

46 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

number of cores, as well as across a variety of parallel
architectures. It also helps to avoid the possibility of dead-
lock.

An application may execute multiple grids either
independently or dependently. Independent grids may
execute concurrently given sufficient hardware resources.
Dependent grids execute sequentially, with an implicit
inter-kernel barrier between them, thus guaranteeing that
all blocks of the first grid will complete before any block
of the second dependent grid is launched.

Threads may access data from multiple memory spaces
during their execution. Each thread has a private local
memory. CUDA uses this memory for thread-private vari-
ables that do not fit in the thread’s registers, as well as for
stack frames and register spilling. Each thread block has a
shared memory visible to all threads of the block that has
the same lifetime as the block. Finally, all threads have
access to the same global memory. Programs declare vari-
ables in shared and global memory with the __shared__

and __device__ type qualifiers. On a Tesla-architecture
GPU, these memory spaces correspond to physically sepa-
rate memories: per-block shared memory is a low-latency
on-chip RAM, while global memory resides in the fast
DRAM on the graphics board.

Shared memory is expected to be a low-latency mem-
ory near each processor, much like an L1 cache. It can,
therefore, provide for high-performance communication
and data sharing among the threads of a thread block.
Since it has the same lifetime as its corresponding thread
block, kernel code will typically initialize data in shared
variables, compute using shared variables, and copy
shared memory results to global memory. Thread blocks
of sequentially dependent grids communicate via global
memory, using it to read input and write results.

Figure 2 diagrams the nested levels of threads, thread
blocks, and grids of thread blocks. It shows the corre-
sponding levels of memory sharing: local, shared, and
global memories for per-thread, per-thread-block, and

per-application data shar-
ing.

A program manages
the global memory space
visible to kernels through
calls to the CUDA runtime,
such as cudaMalloc() and

cudaFree(). Kernels may
execute on a physically
separate device, as is the
case when running kernels
on the GPU. Consequently,
the application must use
cudaMemcpy() to copy
data between the allocated
space and the host system
memory.

The CUDA program-
ming model is similar in
style to the familiar SPMD
(single-program multiple-
data) model—it expresses
parallelism explicitly, and
each kernel executes on a
fixed number of threads.
CUDA, however, is more
flexible than most real-

Scalable Parallel PROGRAMMING with CUDA

Levels of Parallel Granularity and Memory Sharing

per-block
shared

memory

per-thread local memory

thread block

sequence

global
memory

grid 0

grid 1

thread

FIG 2

GPUsFO
CU

S

ACM QUEUE March/April 2008 47 more queue: www.acmqueue.com

izations of SPMD, because each kernel call dynamically
creates a new grid with the right number of thread blocks
and threads for that application step. The program-
mer can use a convenient degree of parallelism for each
kernel, rather than having to design all phases of the
computation to use the same number of threads.

Figure 3 shows an example of a SPMD-like CUDA
code sequence. It first instantiates kernelF on a 2D grid
of 3×2 blocks where each 2D thread block consists of 5×3
threads. It then instantiates kernelG on a 1D grid of four
1D thread blocks with
six threads each. Because
kernelG depends on the
results of kernelF, they are
separated by an inter-
kernel synchronization
barrier.

The concurrent threads
of a thread block express
fine-grained data and
thread parallelism. The
independent thread blocks
of a grid express coarse-
grained data parallelism.
Independent grids express
coarse-grained task paral-
lelism. A kernel is simply C
code for one thread of the
hierarchy.

RESTRICTIONS
When developing CUDA
programs, it is important
to understand the ways in
which the CUDA model
is restricted, largely for
reasons of efficiency.
Threads and thread blocks
may be created only by
invoking a parallel kernel,
not from within a parallel
kernel. Together with the
required independence of
thread blocks, this makes it
possible to execute CUDA
programs with a simple
scheduler that introduces
minimal runtime over-
head. In fact, the Tesla
architecture implements

hardware management and scheduling of threads and
thread blocks.

Task parallelism can be expressed at the thread-block
level, but blockwide barriers are not well suited for
supporting task parallelism among threads in a block.
To enable CUDA programs to run on any number of
processors, communication between thread blocks within
the same kernel grid is not allowed—they must execute
independently. Since CUDA requires that thread blocks
be independent and allows blocks to be executed in any

Kernel, Barrier, Kernel Sequence
kernelF 2D grid is 3 x 2 thread blocks;

each block is 5 x 3 threads

block 0,0 block 1,0 block 2,0

block 0,1 block 1,1

block 1,1

block 1,2

thread 0,0 thread 1,0 thread 2,0 thread 3,0 thread 4,0

thread 0,1 thread 1,1 thread 2,1 thread 3,1 thread 4,1

thread 0,2 thread 1,2 thread 2,2 thread 3,2 thread 4,2

sequence

inter-kernel synchronization barrier

kernelF <<< (3,2),(5,3)>>> (params);

kernelG 1D grid is 4 thread blocks;
each block is 6 threads

block 0 block 1

block 2

block 2 block 3

thread 0 thread 1 thread 2 thread 3 thread 4 thread 5

kernelG <<< 4,6 >>> (params);

FIG 3

48 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

order, combining results generated by multiple blocks
must in general be done by launching a second kernel
on a new grid of thread blocks. However, multiple thread
blocks can coordinate their work using atomic operations
on global memory (e.g., to manage a data structure).

Recursive function calls are not allowed in CUDA
kernels. Recursion is unattractive in a massively paral-
lel kernel because providing stack space for the tens of
thousands of threads that may be active would require
substantial amounts of memory. Serial algorithms that are
normally expressed using recursion, such as quicksort, are
typically best implemented using nested data parallelism
rather than explicit recursion.

To support a heterogeneous system architecture
combining a CPU and a GPU, each with its own memory
system, CUDA programs must copy data and results
between host memory and device memory. The overhead
of CPU–GPU interaction and data transfers is minimized
by using DMA block-transfer engines and fast intercon-
nects. Of course, problems large enough to need a GPU
performance boost amortize the overhead better than
small problems.

RELATED WORK
Although the first CUDA implementation targets NVIDIA
GPUs, the CUDA abstractions are general and useful
for programming multicore CPUs and scalable parallel
systems. Coarse-grained thread blocks map naturally to
separate processor cores, while fine-grained threads map
to multiple-thread contexts, vector operations, and pipe-
lined loops in each core. Stratton et al. have developed
a prototype source-to-source translation framework that
compiles CUDA programs for multicore CPUs by map-
ping a thread block to loops within a single CPU thread.
They found that CUDA kernels compiled in this way
perform and scale well.4

CUDA uses parallel kernels similar to recent GPGPU
programming models, but differs by providing flex-
ible thread creation, thread blocks, shared memory,
global memory, and explicit synchronization. Stream-
ing languages apply parallel kernels to data records
from a stream. Applying a stream kernel to one record
is analogous to executing a single CUDA kernel thread,
but stream programs do not allow dependencies among
kernel threads, and kernels communicate only via FIFO
(first-in, first-out) streams. Brook for GPUs differentiates

between FIFO input/output streams and random-access
gather streams, and it supports parallel reductions. Brook
is a good fit for earlier-generation GPUs with random
access texture units and raster pixel operation units.5

Pthreads and Java provide fork-join parallelism but
are not particularly convenient for data-parallel applica-
tions. OpenMP targets shared memory architectures with
parallel execution constructs, including “parallel for”
and teams of coarse-grained threads. Intel’s C++ Thread-
ing Building Blocks provide similar features for multicore
CPUs. MPI targets distributed memory systems and uses
message passing rather than shared memory.

CUDA APPLICATION ExPERIENCE
The CUDA programming model extends the C language
with a small number of additional parallel abstractions.
Programmers who are comfortable developing in C can
quickly begin writing CUDA programs.

In the relatively short period since the introduction
of CUDA, a number of real-world parallel application
codes have been developed using the CUDA model.
These include FHD-spiral MRI reconstruction,6 molecular
dynamics,7 and n-body astrophysics simulation.8 Running
on Tesla-architecture GPUs, these applications were able
to achieve substantial speedups over alternative imple-
mentations running on serial CPUs: the MRI reconstruc-
tion was 263 times faster; the molecular dynamics code
was 10–100 times faster; and the n-body simulation was
50–250 times faster. These large speedups are a result of
the highly parallel nature of the Tesla architecture and its
high memory bandwidth.

Scalable Parallel PROGRAMMING with CUDA

Compressed Sparse Row (CSR) Matrix

3
0
0
1

0
0
2
0

1
0
4
0

0
0
1
1

a. sample matrix A

= { 3 1 2 4 1 1 1 }

= { 0 2 1 2 3 0 3 }

= { 0 2 2 5 7 }

Av[7]

Aj[7]

Ap[5]

b. CSR representation of matrix

row 0 row 2 row 3

FIG 4

GPUsFO
CU

S

ACM QUEUE March/April 2008 49 more queue: www.acmqueue.com

ExAMPLE: SPARSE MATRIx-
VECTOR PRODUCT
A variety of parallel algo-
rithms can be written in
CUDA in a fairly straight-
forward manner, even
when the data structures
involved are not simple
regular grids. SpMV (sparse
matrix-vector multiplica-
tion) is a good example of
an important numerical
building block that can be
parallelized quite directly
using the abstractions
provided by CUDA. The
kernels we discuss here,
when combined with the
provided CUBLAS vector
routines, make writing
iterative solvers such as
the conjugate gradient9
method straightforward.

A sparse n × n matrix is
one in which the number
of nonzero entries m is
only a small fraction of the
total. Sparse matrix rep-
resentations seek to store
only the nonzero elements
of a matrix. Since it is fairly
typical that a sparse n × n
matrix will contain only
m=O(n) nonzero elements,
this represents a substan-
tial savings in storage space
and processing time.

One of the most com-
mon representations for
general unstructured
sparse matrices is the CSR
(compressed sparse row)
representation. The m
nonzero elements of the
matrix A are stored in row-
major order in an array Av.
A second array Aj records
the corresponding column
index for each entry of Av.
Finally, an array Ap of n+1

float multiply_row(unsigned int rowsize,
 unsigned int *Aj, // column indices for row
 float *Av, // non-zero entries for row
 float *x) // the RHS vector
{
 float sum = 0;

 for(unsigned int column=0; column<rowsize; ++column)
 sum += Av[column] * x[Aj[column]];

 return sum;
} FIG 5
void csrmul_serial(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 float *x, float *y)
{
 for(unsigned int row=0; row<num_rows; ++row)
 {
 unsigned int row_begin = Ap[row];
 unsigned int row_end = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
 Av+row_begin, x);
 }
}

FIG 6
__global__
void csrmul_kernel(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 float *x, float *y)
{
 unsigned int row = blockIdx.x*blockDim.x + threadIdx.x;

 if(row<num_rows)
 {
 unsigned int row_begin = Ap[row];
 unsigned int row_end = Ap[row+1];

 y[row] = multiply_row(row_end-row_begin, Aj+row_begin,
 Av+row_begin, x);
 }
} FIG 7

50 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

elements records the extent
of each row in the previous
arrays; the entries for row
i in Aj and Av extend from
index Ap[i] up to, but not
including, index Ap[i+1].
This implies that Ap[0] will
always be 0 and Ap[n] will
always be the number of nonzero elements in the matrix.
Figure 4 shows an example of the CSR representation of a
simple matrix.

Given a matrix A in CSR form, we can compute a
single row of the product y = Ax using the multiply_row()
procedure shown in figure 5.

Computing the full product is then simply a matter of
looping over all rows and computing the result for that
row using multiply_row(), as shown in figure 6.

This algorithm can be translated into a parallel
CUDA kernel quite easily. We simply spread the loop in
csrmul_serial() over many parallel threads. Each thread
will compute exactly one row of the output vector y.
Figure 7 shows the code for this kernel. Note that it
looks extremely similar to the serial loop used in the
csrmul_serial() procedure. There are really only two points
of difference. First, the row index is computed from the
block and thread indices assigned to each thread. Second,
we have a conditional that evaluates a row product only if
the row index is within the bounds of the matrix (this is
necessary since the number of rows n need not be a mul-
tiple of the block size used in launching the kernel).

Assuming that the matrix data structures have already
been copied to the GPU device memory, launching this
kernel will look like the code in figure 8.

The pattern that we see here is a common one. The
original serial algorithm is a loop whose iterations are
independent of each other. Such loops can be parallelized
quite easily by simply assigning one or more iterations of
the loop to each parallel thread. The programming model
provided by CUDA makes expressing this type of parallel-
ism particularly straightforward.

This general strategy of decomposing computations
into blocks of independent work, and more specifically
breaking up independent loop iterations, is not unique to
CUDA. This is a common approach used in one form or
another by various parallel programming systems, includ-
ing OpenMP and Intel’s Threading Building Blocks.

Scalable Parallel PROGRAMMING with CUDA
 unsigned int blocksize = 128; // or any size up to 512
 unsigned int nblocks = (num_rows + blocksize - 1) / blocksize;
 csrmul_kernel<<<nblocks,blocksize>>>(Ap, Aj, Av, num_rows, x, y);

FIG 8
__global__
void csrmul_cached(unsigned int *Ap, unsigned int *Aj,
 float *Av, unsigned int num_rows,
 const float *x, float *y)
{
 // Cache the rows of x[] corresponding to this block.
 __shared__ float cache[blocksize];

 unsigned int block_begin = blockIdx.x * blockDim.x;
 unsigned int block_end = block_begin + blockDim.x;
 unsigned int row = block_begin + threadIdx.x;

 // Fetch and cache our window of x[].
 if(row<num_rows) cache[threadIdx.x] = x[row];
 __syncthreads();

 if(row<num_rows)
 {
 unsigned int row_begin = Ap[row];
 unsigned int row_end = Ap[row+1];
 float sum = 0, x_j;

 for(unsigned int col=row_begin; col<row_end; ++col)
 {
 unsigned int j = Aj[col];

 // Fetch x_j from our cache when possible
 if(j>=block_begin && j<block_end)
 x_j = cache[j-block_begin];
 else
 x_j = x[j];

 sum += Av[col] * x_j;
 }

 y[row] = sum;
 }
} FIG 9

GPUsFO
CU

S

ACM QUEUE March/April 2008 51 more queue: www.acmqueue.com

CACHING IN SHARED MEMORY
The SpMV algorithms outlined here are fairly simplistic.
We can make a number of optimizations in both the CPU
and GPU codes that can improve performance, including
loop unrolling, matrix reordering, and register blocking.10

The parallel kernels can also be reimplemented in terms
of data-parallel scan operations.11

One of the important architectural features exposed
by CUDA is the presence of the per-block shared memory,
a small on-chip memory with very low latency. Taking
advantage of this memory can deliver substantial perfor-
mance improvements. One common way of doing this
is to use shared memory as a software-managed cache to
hold frequently reused data, shown in figure 9.

In the context of sparse matrix multiplication, we
observe that several rows of A may use a particular array
element x[i]. In many common cases, and particularly
when the matrix has been reordered, the rows using x[i]
will be rows near row i. We can therefore implement
a simple caching scheme and expect to achieve some
performance benefit. The block of threads processing
rows i through j will load
x[i] through x[j] into its
shared memory. We will
unroll the multiply_row()
loop and fetch elements of
x from the cache whenever
possible. The resulting
code is shown in figure 9.
Shared memory can also
be used to make other
optimizations, such as
fetching Ap[row+1] from an
adjacent thread rather than
refetching it from memory.

Because the Tesla
architecture provides
an explicitly managed
on-chip shared memory
rather than an implicitly
active hardware cache, it
is fairly common to add
this sort of optimization.
Although this can impose
some additional devel-
opment burden on the
programmer, it is relatively
minor, and the potential
performance benefits
can be substantial. In the

example shown in figure 9, even this fairly simple use of
shared memory returns a roughly 20 percent performance
improvement on representative matrices derived from 3D
surface meshes. The availability of an explicitly managed
memory in lieu of an implicit cache also has the advan-
tage that caching and prefetching policies can be specifi-
cally tailored to the application needs.

ExAMPLE: PARALLEL REDUCTION
Suppose that we are given a sequence of N integers that
must be combined in some fashion (e.g., a sum). This
occurs in a variety of algorithms, linear algebra being
a common example. On a serial processor, we would
write a simple loop with a single accumulator variable
to construct the sum of all elements in sequence. On a
parallel machine, using a single accumulator variable
would create a global serialization point and lead to very
poor performance. A well-known solution to this problem
is the so-called parallel reduction algorithm. Each paral-
lel thread sums a fixed-length subsequence of the input.
We then collect these partial sums together, by summing

__global__
void plus_reduce(int *input, unsigned int N, int *total)
{
 unsigned int tid = threadIdx.x;
 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

 // Each block loads its elements into shared memory, padding
 // with 0 if N is not a multiple of blocksize
 __shared__ int x[blocksize];
 x[tid] = (i<N) ? input[i] : 0;
 __syncthreads();

 // Every thread now holds 1 input value in x[]
 //
 // Build summation tree over elements. See attached figure.
 for(int s=blockDim.x/2; s>0; s=s/2)
 {
 if(tid < s) x[tid] += x[tid + s];
 __syncthreads();
 }

 // Thread 0 now holds the sum of all input values
 // to this block. Have it add that sum to the running total
 if(tid == 0) atomicAdd(total, x[tid]);
}

FIG 10

52 March/April 2008 ACM QUEUE rants: feedback@acmqueue.com

pairs of partial sums in
parallel. Each step of this
pair-wise summation cuts
the number of partial sums
in half and ultimately
produces the final sum
after log2 N steps. Note that
this implicitly builds a tree
structure over the initial
partial sums.

In the example shown
in figure 10, each thread
simply loads one element
of the input sequence (i.e.,
it initially sums a subse-
quence of length one). At
the end of the reduction,
we want thread 0 to hold
the sum of all elements
initially loaded by the
threads of its block. We
can achieve this in parallel
by summing values in a
tree-like pattern. The loop in this kernel implicitly builds
a summation tree over the input elements. The action of
this loop for the simple case of a block of eight threads is
illustrated in figure 11. The steps of the loop are shown as
successive levels of the diagram and edges indicate from
where partial sums are being read.

At the end of this loop, thread 0 holds the sum of
all the values loaded by this block. If we want the final
value of the location pointed to by total to contain the
total of all elements in the array, we must combine the
partial sums of all the blocks in the grid. One strategy
would be to have each block write its partial sum into a
second array and then launch the reduction kernel again,
repeating the process until we had reduced the sequence
to a single value. A more attractive alternative supported
by the Tesla architecture is to use atomicAdd(), an efficient
atomic read-modify-write primitive supported by the
memory subsystem. This eliminates the need for addi-
tional temporary arrays and repeated kernel launches.

Parallel reduction is an essential primitive for parallel
programming and highlights the importance of per-block
shared memory and low-cost barriers in making coopera-
tion among threads efficient. This degree of data shuffling

among threads would be prohibitively expensive if done
in off-chip global memory.

THE DEMOCRATIzATION OF
PARALLEL PROGRAMMING
CUDA is a model for parallel programming that pro-
vides a few easily understood abstractions that allow
the programmer to focus on algorithmic efficiency and
develop scalable parallel applications. In fact, CUDA is an
excellent programming environment for teaching paral-
lel programming. The University of Virginia has used it
as just a short, three-week module in an undergraduate
computer architecture course, and students were able to
write a correct k-means clustering program after just three
lectures. The University of Illinois has successfully taught
a semester-long parallel programming course using CUDA
to a mix of computer science and non-computer science
majors, with students obtaining impressive speedups on
a variety of real applications, including the previously
mentioned MRI reconstruction example.

CUDA is supported on NVIDIA GPUs with the Tesla
unified graphics and computing architecture of the
GeForce 8-series, recent Quadro, Tesla, and future GPUs.

Scalable Parallel PROGRAMMING with CUDA

Parallel Sum Reduction Tree

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7]

x[i] += x[i+4];

x[i] += x[i+2];

x[i] += x[i+1];

FIG 11

GPUsFO
CU

S

ACM QUEUE March/April 2008 53 more queue: www.acmqueue.com

The programming paradigm provided by CUDA has
allowed developers to harness the power of these scal-
able parallel processors with relative ease, enabling them
to achieve speedups of 100 times or more on a variety of
sophisticated applications.

The CUDA abstractions, however, are general and
provide an excellent programming environment for mul-
ticore CPU chips. A prototype source-to-source translation
framework developed at the University of Illinois com-
piles CUDA programs for multicore CPUs by mapping
a parallel thread block to loops within a single physical
thread. CUDA kernels compiled in this way exhibit excel-
lent performance and scalability.12

Although CUDA was released less than a year ago, it is
already the target of massive development activity—there
are tens of thousands of CUDA developers. The combi-
nation of massive speedups, an intuitive programming
environment, and affordable, ubiquitous hardware is rare
in today’s market. In short, CUDA represents a democrati-
zation of parallel programming. Q

REFERENCES
1. NVIDIA. 2007. CUDA Technology; http://www.nvidia.

com/CUDA.
2. NVIDIA. 2007. CUDA Programming Guide 1.1; http://

developer.download.nvidia.com/compute/cuda/1_1/
NVIDIA_CUDA_Programming_Guide_1.1.pdf.

3. Stratton, J.A., Stone, S. S., Hwu, W. W. 2008. M-CUDA:
An efficient implementation of CUDA kernels on mul-
ticores. IMPACT Technical Report 08-01, University of
Illinois at Urbana-Champaign, (February).

4. See reference 3.
5. Buck, I., Foley, T., Horn, D., Sugerman, J., Fataha-

lian, K., Houston, M., Hanrahan, P. Brook for GPUs:
Stream computing on graphics hardware. 2004.
Proceedings of SIGGRAPH (August): 777-786; http://doi.
acm.org/10.1145/1186562.1015800.

6. Stone, S.S., Yi, H., Hwu, W.W., Haldar, J.P., Sutton,
B.P., Liang, Z.-P. 2007. How GPUs can improve the
quality of magnetic resonance imaging. The First
Workshop on General-Purpose Processing on Graphics
Processing Units (October).

7. Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J.,
Trabuco, L.G., Schulten, K. 2007. Accelerating molecu-
lar modeling applications with graphics processors.
Journal of Computational Chemistry 28(16): 2618–2640;
http://dx.doi.org/10.1002/jcc.20829.

8. Nyland, L., Harris, M., Prins, J. 2007. Fast n-body
simulation with CUDA. In GPU Gems 3. H. Nguyen,
ed. Addison-Wesley.

9. Golub, G.H., and Van Loan, C.F. 1996. Matrix Compu-
tations, 3rd edition. Johns Hopkins University Press.

10. Buatois, L., Caumon, G., Lévy, B. 2007. Concurrent
number cruncher: An efficient sparse linear solver on
the GPU. Proceedings of the High-Performance Computa-
tion Conference (HPCC), Springer LNCS.

11. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D. 2007.
Scan primitives for GPU computing. In Proceedings of
Graphics Hardware (August): 97–106.

12. See Reference 3.

Links to the latest version of the CUDA development tools,
documentation, code samples, and user discussion forums can
be found at: http://www.nvidia.com/CUDA.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

JOHN NICKOLLS is director of architecture at NVIDIA for
GPU computing. He was previously with Broadcom, Silicon
Spice, Sun Microsystems, and was a cofounder of MasPar
Computer. His interests include parallel processing systems,
languages, and architectures. He has a B.S. in electrical engi-
neering and computer science from the University of Illinois,
and M.S. and Ph.D. degrees in electrical engineering from
Stanford University.
IAN BUCK works for NVIDIA as the GPU-Compute software
manager. He completed his Ph.D. at the Stanford Graph-
ics Lab in 2004. His thesis was titled “Stream Computing
on Graphics Hardware,” researching programming models
and computing strategies for using graphics hardware as
a general-purpose computing platform. His work included
developing the Brook software tool chain for abstracting the
GPU as a general-purpose streaming coprocessor.
MICHAEL GARLAND is a research scientist with NVIDIA
Research. Prior to joining NVIDIA, he was an assistant profes-
sor in the department of computer science at the University
of Illinois at Urbana-Champaign. He received Ph.D. and
B.S. degrees from Carnegie Mellon University. His research
interests include computer graphics and visualization, geo-
metric algorithms, and parallel algorithms and programming
models.
KEVIN SKADRON is an associate professor in the depart-
ment of computer science at the University of Virginia
and is currently on sabbatical with NVIDIA Research. He
received his Ph.D. from Princeton University and B.S. from
Rice University. His research interests include power- and
temperature-aware design, and manycore architecture and
programming models. He is a senior member of the ACM.
© 2008 ACM 1542-7730/08/0300 $5.00

